Roth’s Theorem: Overview

Roth’s Theorem

1000/

Let 6 >0, and let N =N(d) =e . Then a set A C [N] with |A| > éN contains a 3-term AP.

I Fourier Analysis on Zy

Let N be a prime, let w = e?™/N and let f : Zy — C. The Fourier transform f of f is defined
by f(r) = >, f(s)w™. If also g : Zy — C, then the convolution f * g is defined by the formula
(fxg)(s) =>_, f(t)g(t — s). We have the following identities:
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IT The fundamental formula and its consequences

Our strategy will be to show that either A contains plenty of 3-term APs, or there exists a (long)
subprogression P C [N] such that |[ANP| > (6-+c62)| P|. We will call such a P a high density subprogression,
or hdsp. Repeated use of this fact will give the result.

Suppose that A, B,C C Zy. Then the number of (s,t,u) € A x B x C with s + u = 2t is given by

NN " A(r)B(=2r)C(r) = N7'A|B||C| + N7' Y A(r)B(—2r)C(r)
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Applying this with B = C = AN (N/3,2N/3) gives that either A contains at least (5‘?N2/50 — N 3-term
APs, or |B| < §N/5 (whence A\ B lies in a hdsp), or there is some r # 0 such that |A(r)| > §2N/10. We
must show that this third possibility also enables us to find a hdsp.




IIT A high density subprogression mod N

At this stage, the proof is morally over — a large Fourier coefficient should guarantee some sort of
“periodicity” in A, which should easily yield a hdsp. However, we will have to unravel it. We divide the
unit circle into M equal arcs Ii,. .., Iy, where M ~ 40762, Each arc contains about N/M = §2N/40x
consecutive powers of w. For 1 < j < M, set
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and pick s; € Pj. Now
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A(r) = ZA(s)w_” = Z

J

M M
Z Z WS = Z IAij‘w_TSj
j=1seP; j=1

Since the numbers w™"% are spread almost evenly around the circle, Zjle w™ "% is very small. Conse-
quently, the sizes of the intersections |A N P;| must differ from each other by at least a certain amount,
and indeed the above reasoning can be made to show that, for some j,

|ANP;| > (8 + 6°/40)| P;| = &'| P}

€p;

IV A high density subprogression

We are almost done, except that P; is only an arithmetic progression (of common difference —r1)
mod N, rather than a genuine AP. In fact, three issues present themselves:

e P; might “overlap” several times, e.g. we could have N =101 and P; = {30, 60,90, 19, 49, 79, 8, 38, 68,98, 27}
e P; might not overlap, but it might “pass through” 0, e.g. we could have N =11 and P; = {6, 8,10, 1,3}

o N might not be prime, e.g. 10 isn’t prime

Roughly speaking, these are dealt with as follows. If P; = {s¢,s1,...,s;—1} has length [, we look at
the first m ~ v/ terms. Two of these must be within N/m of each other, say s, and sp, with b > a. But
then sp_, is within N/m of so. Writing u = b — a, we consider the sequences Q? = {80, Su, S2us - - -} Q} =
{51, Su+1, S2u+1, - - .},Q? = {9, Sut2,S2u+2y---},-... These are still mod N progressions, but since the
common difference in each one is less than N/m is magnitude, we can split each Q;- into genuine APs (call
them Ré?), all but two of which have length at least V/I.

The argument now proceeds as follows. If the density of A in P; is at least ¢’ (as above), then the
density of A must be at least ¢’ in one of the subprogressions R?. But what if the specific high density Rf
turns out to be one of the “ends” of a @7, which potentially is very short? This is really to do with the
second issue above, which we handle using the following lemma. Suppose P; and P, are disjoint APs (e.g.
P, ={6,8,10} and P, = {1,3}). Suppose also that |[A N (Py U P2)| > (6 + §2/40)| P, U P;|. Then either
both P; and P, have length at least §2/80|P; U P;|, or at most one of them, say P;, has length less than
§2/80|Py U P, and then |A N Py| > (§ + 62/80)| P2|. The proof of this lemma is just a simple calculation.

Finally, the third issue is easily resolved using Bertrand’s Postulate, proved by Chebyshev: for any
n > 1, there is always a prime p satisfying n < p < 2n. This has an elementary proof.
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