Roth's Theorem: Overview

Roth's Theorem

Let $\delta>0$, and let $N=N(\delta)=e^{e^{1000 / \delta}}$. Then a set $A \subset[N]$ with $|A| \geq \delta N$ contains a 3-term AP.

I Fourier Analysis on \mathbb{Z}_{N}

Let N be a prime, let $\omega=e^{2 \pi i / N}$, and let $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$. The Fourier transform \hat{f} of f is defined by $\hat{f}(r)=\sum_{s} f(s) \omega^{-r s}$. If also $g: \mathbb{Z}_{N} \rightarrow \mathbb{C}$, then the convolution $f * g$ is defined by the formula $(f * g)(s)=\sum_{t} f(t) \overline{g(t-s)}$. We have the following identities:

$$
\begin{aligned}
(f * g)^{\wedge}(r) & =\hat{f}(r) \overline{\hat{g}(r)} \\
\sum_{r} \hat{f}(r) \overline{\hat{g}(r)} & =N \sum_{s} f(s) \overline{g(s)} \\
\sum_{r}|\hat{f}(r)|^{2} & =N \sum_{s}|f(s)|^{2} \\
\sum_{r} \hat{f}(r) \omega^{r s} & =N f(s)
\end{aligned}
$$

II The fundamental formula and its consequences

Our strategy will be to show that either A contains plenty of 3-term APs, or there exists a (long) subprogression $P \subset[N]$ such that $|A \cap P| \geq\left(\delta+c \delta^{2}\right)|P|$. We will call such a P a high density subprogression, or hdsp. Repeated use of this fact will give the result.

Suppose that $A, B, C \subset \mathbb{Z}_{N}$. Then the number of $(s, t, u) \in A \times B \times C$ with $s+u=2 t$ is given by

$$
\begin{aligned}
N^{-1} \sum_{r} \hat{A}(r) \hat{B}(-2 r) \hat{C}(r) & =N^{-1}|A||B \| C|+N^{-1} \sum_{r \neq 0} \hat{A}(r) \hat{B}(-2 r) \hat{C}(r) \\
& \geq N^{-1}|A||B \| C|-\max _{r \neq 0}|\hat{A}(r)||B|^{1 / 2}|C|^{1 / 2}
\end{aligned}
$$

Applying this with $B=C=A \cap(N / 3,2 N / 3)$ gives that either A contains at least $\delta^{3} N^{2} / 50-N 3$-term APs, or $|B| \leq \delta N / 5$ (whence $A \backslash B$ lies in a hdsp), or there is some $r \neq 0$ such that $|\hat{A}(r)| \geq \delta^{2} N / 10$. We must show that this third possibility also enables us to find a hdsp.

III A high density subprogression $\bmod \mathbf{N}$

At this stage, the proof is morally over - a large Fourier coefficient should guarantee some sort of "periodicity" in A, which should easily yield a hdsp. However, we will have to unravel it. We divide the unit circle into M equal arcs I_{1}, \ldots, I_{M}, where $M \approx 40 \pi \delta^{-2}$. Each arc contains about $N / M=\delta^{2} N / 40 \pi$ consecutive powers of ω. For $1 \leq j \leq M$, set

$$
P_{j}=\left\{s \in \mathbb{Z}_{N}: \omega^{-r s} \in I_{j}\right\}
$$

and pick $s_{j} \in P_{j}$. Now

$$
\hat{A}(r)=\sum_{s} A(s) \omega^{-r s}=\sum_{j=1}^{M} \sum_{s \in P_{j}} A(s) \omega^{-r s} \approx \sum_{j=1}^{M} \sum_{s \in P_{j}} A(s) \omega^{-r s_{j}}=\sum_{j=1}^{M}\left|A \cap P_{j}\right| \omega^{-r s_{j}}
$$

Since the numbers $\omega^{-r s_{j}}$ are spread almost evenly around the circle, $\sum_{j=1}^{M} \omega^{-r s_{j}}$ is very small. Consequently, the sizes of the intersections $\left|A \cap P_{j}\right|$ must differ from each other by at least a certain amount, and indeed the above reasoning can be made to show that, for some j,

$$
\left|A \cap P_{j}\right| \geq\left(\delta+\delta^{2} / 40\right)\left|P_{j}\right|=\delta^{\prime}\left|P_{j}\right|
$$

IV A high density subprogression

We are almost done, except that P_{j} is only an arithmetic progression (of common difference $-r^{-1}$) $\bmod N$, rather than a genuine AP. In fact, three issues present themselves:

- P_{j} might "overlap" several times, e.g. we could have $N=101$ and $P_{j}=\{30,60,90,19,49,79,8,38,68,98,27\}$
- P_{j} might not overlap, but it might "pass through" 0 , e.g. we could have $N=11$ and $P_{j}=\{6,8,10,1,3\}$
- N might not be prime, e.g. 10 isn't prime

Roughly speaking, these are dealt with as follows. If $P_{j}=\left\{s_{0}, s_{1}, \ldots, s_{l-1}\right\}$ has length l, we look at the first $m \approx \sqrt{l}$ terms. Two of these must be within N / m of each other, say s_{a} and s_{b}, with $b>a$. But then s_{b-a} is within N / m of s_{0}. Writing $u=b-a$, we consider the sequences $Q_{j}^{0}=\left\{s_{0}, s_{u}, s_{2 u}, \ldots\right\}, Q_{j}^{1}=$ $\left\{s_{1}, s_{u+1}, s_{2 u+1}, \ldots\right\}, Q_{j}^{2}=\left\{s_{2}, s_{u+2}, s_{2 u+2}, \ldots\right\}, \ldots$. These are still $\bmod N$ progressions, but since the common difference in each one is less than N / m is magnitude, we can split each Q_{j}^{i} into genuine APs (call them R_{j}^{k}), all but two of which have length at least \sqrt{l}.

The argument now proceeds as follows. If the density of A in P_{j} is at least δ^{\prime} (as above), then the density of A must be at least δ^{\prime} in one of the subprogressions R_{j}^{k}. But what if the specific high density R_{j}^{k} turns out to be one of the "ends" of a Q_{j}^{i}, which potentially is very short? This is really to do with the second issue above, which we handle using the following lemma. Suppose P_{1} and P_{2} are disjoint APs (e.g. $P_{1}=\{6,8,10\}$ and $\left.P_{2}=\{1,3\}\right)$. Suppose also that $\left|A \cap\left(P_{1} \cup P_{2}\right)\right| \geq\left(\delta+\delta^{2} / 40\right)\left|P_{1} \cup P_{2}\right|$. Then either both P_{1} and P_{2} have length at least $\delta^{2} / 80\left|P_{1} \cup P_{2}\right|$, or at most one of them, say P_{1}, has length less than $\delta^{2} / 80\left|P_{1} \cup P_{2}\right|$, and then $\left|A \cap P_{2}\right| \geq\left(\delta+\delta^{2} / 80\right)\left|P_{2}\right|$. The proof of this lemma is just a simple calculation.

Finally, the third issue is easily resolved using Bertrand's Postulate, proved by Chebyshev: for any $n \geq 1$, there is always a prime p satisfying $n \leq p \leq 2 n$. This has an elementary proof.

