
Roth’s Theorem: Overview

Roth’s Theorem

Let δ > 0, and let N = N(δ) = ee
1000/δ

. Then a set A ⊂ [N ] with |A| ≥ δN contains a 3-term AP.

I Fourier Analysis on ZN

Let N be a prime, let ω = e2πi/N , and let f : ZN → C. The Fourier transform f̂ of f is defined
by f̂(r) =

∑
s f(s)ω−rs. If also g : ZN → C, then the convolution f ∗ g is defined by the formula

(f ∗ g)(s) =
∑
t f(t)g(t− s). We have the following identities:

(f ∗ g)∧(r) = f̂(r)ĝ(r)∑
r

f̂(r)ĝ(r) = N
∑
s

f(s)g(s)∑
r

|f̂(r)|2 = N
∑
s

|f(s)|2∑
r

f̂(r)ωrs = Nf(s)

II The fundamental formula and its consequences

Our strategy will be to show that either A contains plenty of 3-term APs, or there exists a (long)
subprogression P ⊂ [N ] such that |A∩P | ≥ (δ+cδ2)|P |. We will call such a P a high density subprogression,
or hdsp. Repeated use of this fact will give the result.

Suppose that A,B,C ⊂ ZN . Then the number of (s, t, u) ∈ A×B × C with s+ u = 2t is given by

N−1
∑
r

Â(r)B̂(−2r)Ĉ(r) = N−1|A||B||C|+N−1
∑
r 6=0

Â(r)B̂(−2r)Ĉ(r)

≥ N−1|A||B||C| −max
r 6=0
|Â(r)||B|1/2|C|1/2

Applying this with B = C = A ∩ (N/3, 2N/3) gives that either A contains at least δ3N2/50 −N 3-term
APs, or |B| ≤ δN/5 (whence A \B lies in a hdsp), or there is some r 6= 0 such that |Â(r)| ≥ δ2N/10. We
must show that this third possibility also enables us to find a hdsp.
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III A high density subprogression mod N

At this stage, the proof is morally over – a large Fourier coefficient should guarantee some sort of
“periodicity” in A, which should easily yield a hdsp. However, we will have to unravel it. We divide the
unit circle into M equal arcs I1, . . . , IM , where M ≈ 40πδ−2. Each arc contains about N/M = δ2N/40π
consecutive powers of ω. For 1 ≤ j ≤M , set

Pj = {s ∈ ZN : ω−rs ∈ Ij}

and pick sj ∈ Pj . Now

Â(r) =
∑
s

A(s)ω−rs =
M∑
j=1

∑
s∈Pj

A(s)ω−rs ≈
M∑
j=1

∑
s∈Pj

A(s)ω−rsj =
M∑
j=1

|A ∩ Pj |ω−rsj

Since the numbers ω−rsj are spread almost evenly around the circle,
∑M
j=1 ω

−rsj is very small. Conse-
quently, the sizes of the intersections |A ∩ Pj | must differ from each other by at least a certain amount,
and indeed the above reasoning can be made to show that, for some j,

|A ∩ Pj | ≥ (δ + δ2/40)|Pj | = δ′|Pj |

IV A high density subprogression

We are almost done, except that Pj is only an arithmetic progression (of common difference −r−1)
mod N , rather than a genuine AP. In fact, three issues present themselves:

• Pj might “overlap” several times, e.g. we could have N = 101 and Pj = {30, 60, 90, 19, 49, 79, 8, 38, 68, 98, 27}

• Pj might not overlap, but it might “pass through” 0, e.g. we could have N = 11 and Pj = {6, 8, 10, 1, 3}

• N might not be prime, e.g. 10 isn’t prime

Roughly speaking, these are dealt with as follows. If Pj = {s0, s1, . . . , sl−1} has length l, we look at
the first m ≈

√
l terms. Two of these must be within N/m of each other, say sa and sb, with b > a. But

then sb−a is within N/m of s0. Writing u = b− a, we consider the sequences Q0
j = {s0, su, s2u, . . .}, Q1

j =
{s1, su+1, s2u+1, . . .}, Q2

j = {s2, su+2, s2u+2, . . .}, . . .. These are still mod N progressions, but since the
common difference in each one is less than N/m is magnitude, we can split each Qij into genuine APs (call
them Rkj ), all but two of which have length at least

√
l.

The argument now proceeds as follows. If the density of A in Pj is at least δ′ (as above), then the
density of A must be at least δ′ in one of the subprogressions Rkj . But what if the specific high density Rkj
turns out to be one of the “ends” of a Qij , which potentially is very short? This is really to do with the
second issue above, which we handle using the following lemma. Suppose P1 and P2 are disjoint APs (e.g.
P1 = {6, 8, 10} and P2 = {1, 3}). Suppose also that |A ∩ (P1 ∪ P2)| ≥ (δ + δ2/40)|P1 ∪ P2|. Then either
both P1 and P2 have length at least δ2/80|P1 ∪ P2|, or at most one of them, say P1, has length less than
δ2/80|P1 ∪ P2|, and then |A ∩ P2| ≥ (δ + δ2/80)|P2|. The proof of this lemma is just a simple calculation.

Finally, the third issue is easily resolved using Bertrand’s Postulate, proved by Chebyshev: for any
n ≥ 1, there is always a prime p satisfying n ≤ p ≤ 2n. This has an elementary proof.
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