Continuous functional equations

November 14, 2008

I'm not really an expert on this sort of thing, so let's jump straight to the

Examples

1. (Putnam 1971) Determine all polynomials P(x) such that $P(x^2 + 1) = (P(x))^2 + 1$ and P(0) = 0.

Just like last week, you should aim to calculate as many values of P as possible, starting with P(1). It shouldn't take you long to spot a pattern, and hence an example of a polynomial satisfying the equation. How do you prove that this really is the only example?

2. (Putnam 1971) Let F(x) be a real valued function defined for all real x except for x = 0and x = 1 and satisfying the functional equation

$$F(x) + F\left(\frac{x-1}{x}\right) = 1 + x.$$

Find all functions F(x) satisfying these conditions.

As before, our aim should be to calculate values of F. Bear in mind that F is unlikely to be a polynomial. Unfortunately, we can't work out any values of F directly: there is no real x for which $x = \frac{x-1}{x}$ (why not?). We're already told that F isn't defined at 0 or 1, so let's try setting x = 2. We obtain F(2) + F(1/2) = 3. Setting x = 1/2, we see that F(1/2) + F(-1) = -1/2. We seem to be getting nowhere, but setting x = -1 (which would also have been a good starting point) shows us that F(2) + F(-1) = 0. But now we have three equations in three unknowns, which we can solve – it turns out that F(2) = 3/4.

Figure 1: Stereographic projection

At this stage it is tempting to work out more values, and indeed it is possible to guess a formula from F(3) = 17/12, F(4) = 47/24 and F(5) = 99/40. However, it is simpler to observe that the same method which gave us F(2) will also give us F(x) for any x (except 0 and 1). Setting g(x) = 1 - 1/x and using $2 \rightarrow 1/2$ to denote g(2) = 1/2, we see that

$$x \to 1 - \frac{1}{x} \to \frac{1}{1 - x} \to x$$

so that g(g(g(x))) = x. Therefore, whatever $x \neq 0, 1$ we start with, we will always get three equations in the three "unknowns" F(x), F(g(x)) and F(g(g(x))). You should be able to solve these equations to get a formula for F(x).

It is interesting that g(g(g(x))) = x for all $x \neq 0, 1$. A similar function with a similar property is $h(x) = \frac{1+x}{1-x}$, which satisfies h(h(h(x))) = x. There is a pretty non-algebraic proof of this – map a point $x \in \mathbb{R}$ to a point P on a unit-diameter circle by *stereographic projection* (see Figure 1). Now mapping x to h(x) corresponds to rotating the circle by ninety degrees. (Exercise: work out the details.)

3. (Putnam 1990) Find all real-valued continuously differentiable functions f on the real line such that for all x

$$(f(x))^{2} = \int_{0}^{x} \left((f(t))^{2} + (f'(t))^{2} \right) dt + 1990.$$

What is f(0)? Now, is there anything else we can observe (almost) *immediately*, without doing any detailed calculations?

4. (Putnam 1991) Suppose f and g are nonconstant, differentiable, real-valued functions on \mathbb{R} . Furthermore, suppose that for each pair of real numbers x and y,

$$f(x+y)=f(x)f(y)-g(x)g(y),$$

$$g(x+y)=f(x)g(y)+g(x)f(y).$$
 If $f'(0)=0,$ prove that $(f(x))^2+(g(x))^2=1$ for all $x.$

These sorts of problems are like detective stories, where the detective is *you*. You should have a hunch as to the identity of the killers f(x) and g(x), but how are you going to *prove* it? You have all the evidence you need in order to force a full confession.

Homework

1. (Putnam 2000) Let f(x) be a continuous function such that $f(2x^2 - 1) = 2xf(x)$ for all x. Show that f(x) = 0 for $-1 \le x \le 1$. [Hint. Find some values of f. Then let $x = \cos \theta$.]

2. (College Mathematics Journal November 2008, proposed by Árpád Bényi) Call a function f good if $f^{(2008)}(x) = -x$ for all $x \in \mathbb{R}$, where $f^{(2008)}$ denotes the function f composed with itself 2008 times. Prove that every good function is bijective, odd, and non-monotonic. Prove also that if f is good and $x_0 \neq 0$, there exist infinitely many 5-tuples $(p_1, p_2, p_3, p_4, p_5)$ of distinct positive integers whose sum is a multiple of 5 and for which, with $q_k := f^{(p_k)}(x_0)$, $q_1 \neq q_i$ for i = 2, 3, 4, 5 and $q_i \neq q_{i+1}$ for i = 2, 3, 4.