
Continuous functional equations

November 14, 2008

I’m not really an expert on this sort of thing, so let’s jump straight to the

Examples

1. (Putnam 1971) Determine all polynomials P (x) such that P (x2 + 1) = (P (x))2 + 1 and
P (0) = 0.

Just like last week, you should aim to calculate as many values of P as possible, starting
with P (1). It shouldn’t take you long to spot a pattern, and hence an example of a
polynomial satisfying the equation. How do you prove that this really is the only example?

2. (Putnam 1971) Let F (x) be a real valued function defined for all real x except for x = 0
and x = 1 and satisfying the functional equation

F (x) + F

(

x − 1

x

)

= 1 + x.

Find all functions F (x) satisfying these conditions.

As before, our aim should be to calculate values of F . Bear in mind that F is unlikely to
be a polynomial. Unfortunately, we can’t work out any values of F directly: there is no
real x for which x = x−1

x
(why not?). We’re already told that F isn’t defined at 0 or 1,

so let’s try setting x = 2. We obtain F (2) + F (1/2) = 3. Setting x = 1/2, we see that
F (1/2) + F (−1) = −1/2. We seem to be getting nowhere, but setting x = −1 (which
would also have been a good starting point) shows us that F (2)+F (−1) = 0. But now we
have three equations in three unknowns, which we can solve – it turns out that F (2) = 3/4.
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Figure 1: Stereographic projection

At this stage it is tempting to work out more values, and indeed it is possible to guess a
formula from F (3) = 17/12, F (4) = 47/24 and F (5) = 99/40. However, it is simpler to
observe that the same method which gave us F (2) will also give us F (x) for any x (except
0 and 1). Setting g(x) = 1 − 1/x and using 2 → 1/2 to denote g(2) = 1/2, we see that

x → 1 −
1

x
→

1

1 − x
→ x

so that g(g(g(x))) = x. Therefore, whatever x 6= 0, 1 we start with, we will always get
three equations in the three “unknowns” F (x), F (g(x)) and F (g(g(x))). You should be
able to solve these equations to get a formula for F (x).

It is interesting that g(g(g(x))) = x for all x 6= 0, 1. A similar function with a similar
property is h(x) = 1+x

1−x
, which satisfies h(h(h(h(x)))) = x. There is a pretty non-algebraic

proof of this – map a point x ∈ R to a point P on a unit-diameter circle by stereographic

projection (see Figure 1). Now mapping x to h(x) corresponds to rotating the circle by
ninety degrees. (Exercise: work out the details.)

3. (Putnam 1990) Find all real-valued continuously differentiable functions f on the real
line such that for all x

(f(x))2 =

∫ x

0

(

(f(t))2 + (f ′(t))2
)

dt + 1990.

What is f(0)? Now, is there anything else we can observe (almost) immediately, without
doing any detailed calculations?
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4. (Putnam 1991) Suppose f and g are nonconstant, differentiable, real-valued functions
on R. Furthermore, suppose that for each pair of real numbers x and y,

f(x + y) = f(x)f(y) − g(x)g(y),

g(x + y) = f(x)g(y) + g(x)f(y).

If f ′(0) = 0, prove that (f(x))2 + (g(x))2 = 1 for all x.

These sorts of problems are like detective stories, where the detective is you. You should
have a hunch as to the identity of the killers f(x) and g(x), but how are you going to prove

it? You have all the evidence you need in order to force a full confession.

Homework

1. (Putnam 2000) Let f(x) be a continuous function such that f(2x2 − 1) = 2xf(x) for all
x. Show that f(x) = 0 for −1 ≤ x ≤ 1. [Hint. Find some values of f . Then let x = cos θ.]

2. (College Mathematics Journal November 2008, proposed by Árpád Bényi) Call a func-
tion f good if f (2008)(x) = −x for all x ∈ R, where f (2008) denotes the function f composed
with itself 2008 times. Prove that every good function is bijective, odd, and non-monotonic.
Prove also that if f is good and x0 6= 0, there exist infinitely many 5-tuples (p1, p2, p3, p4, p5)
of distinct positive integers whose sum is a multiple of 5 and for which, with qk := f (pk)(x0),
q1 6= qi for i = 2, 3, 4, 5 and qi 6= qi+1 for i = 2, 3, 4.
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