Continuous functional equations

November 14, 2008

I'm not really an expert on this sort of thing, so let's jump straight to the

Examples

1. (Putnam 1971) Determine all polynomials $P(x)$ such that $P\left(x^{2}+1\right)=(P(x))^{2}+1$ and $P(0)=0$.

Just like last week, you should aim to calculate as many values of P as possible, starting with $P(1)$. It shouldn't take you long to spot a pattern, and hence an example of a polynomial satisfying the equation. How do you prove that this really is the only example?
2. (Putnam 1971) Let $F(x)$ be a real valued function defined for all real x except for $x=0$ and $x=1$ and satisfying the functional equation

$$
F(x)+F\left(\frac{x-1}{x}\right)=1+x .
$$

Find all functions $F(x)$ satisfying these conditions.
As before, our aim should be to calculate values of F. Bear in mind that F is unlikely to be a polynomial. Unfortunately, we can't work out any values of F directly: there is no real x for which $x=\frac{x-1}{x}$ (why not?). We're already told that F isn't defined at 0 or 1, so let's try setting $x=2$. We obtain $F(2)+F(1 / 2)=3$. Setting $x=1 / 2$, we see that $F(1 / 2)+F(-1)=-1 / 2$. We seem to be getting nowhere, but setting $x=-1$ (which would also have been a good starting point) shows us that $F(2)+F(-1)=0$. But now we have three equations in three unknowns, which we can solve - it turns out that $F(2)=3 / 4$.

Figure 1: Stereographic projection

At this stage it is tempting to work out more values, and indeed it is possible to guess a formula from $F(3)=17 / 12, F(4)=47 / 24$ and $F(5)=99 / 40$. However, it is simpler to observe that the same method which gave us $F(2)$ will also give us $F(x)$ for any x (except 0 and 1). Setting $g(x)=1-1 / x$ and using $2 \rightarrow 1 / 2$ to denote $g(2)=1 / 2$, we see that

$$
x \rightarrow 1-\frac{1}{x} \rightarrow \frac{1}{1-x} \rightarrow x
$$

so that $g(g(g(x)))=x$. Therefore, whatever $x \neq 0,1$ we start with, we will always get three equations in the three "unknowns" $F(x), F(g(x))$ and $F(g(g(x)))$. You should be able to solve these equations to get a formula for $F(x)$.

It is interesting that $g(g(g(x)))=x$ for all $x \neq 0,1$. A similar function with a similar property is $h(x)=\frac{1+x}{1-x}$, which satisfies $h(h(h(h(x))))=x$. There is a pretty non-algebraic proof of this - map a point $x \in \mathbb{R}$ to a point P on a unit-diameter circle by stereographic projection (see Figure 1). Now mapping x to $h(x)$ corresponds to rotating the circle by ninety degrees. (Exercise: work out the details.)
3. (Putnam 1990) Find all real-valued continuously differentiable functions f on the real line such that for all x

$$
(f(x))^{2}=\int_{0}^{x}\left((f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right) d t+1990
$$

What is $f(0)$? Now, is there anything else we can observe (almost) immediately, without doing any detailed calculations?
4. (Putnam 1991) Suppose f and g are nonconstant, differentiable, real-valued functions on \mathbb{R}. Furthermore, suppose that for each pair of real numbers x and y,

$$
\begin{aligned}
& f(x+y)=f(x) f(y)-g(x) g(y), \\
& g(x+y)=f(x) g(y)+g(x) f(y) .
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
These sorts of problems are like detective stories, where the detective is you. You should have a hunch as to the identity of the killers $f(x)$ and $g(x)$, but how are you going to prove it? You have all the evidence you need in order to force a full confession.

Homework

1. (Putnam 2000) Let $f(x)$ be a continuous function such that $f\left(2 x^{2}-1\right)=2 x f(x)$ for all x. Show that $f(x)=0$ for $-1 \leq x \leq 1$. [Hint. Find some values of f. Then let $x=\cos \theta$.]
2. (College Mathematics Journal November 2008, proposed by Árpád Bényi) Call a function f good if $f^{(2008)}(x)=-x$ for all $x \in \mathbb{R}$, where $f^{(2008)}$ denotes the function f composed with itself 2008 times. Prove that every good function is bijective, odd, and non-monotonic. Prove also that if f is good and $x_{0} \neq 0$, there exist infinitely many 5 -tuples ($p_{1}, p_{2}, p_{3}, p_{4}, p_{5}$) of distinct positive integers whose sum is a multiple of 5 and for which, with $q_{k}:=f^{\left(p_{k}\right)}\left(x_{0}\right)$, $q_{1} \neq q_{i}$ for $i=2,3,4,5$ and $q_{i} \neq q_{i+1}$ for $i=2,3,4$.
