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These are sometimes needed in the Putnam. Here is a basic toolkit.

• Sum of squares inequality
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• Arithmetic-Mean–Geometric-Mean (AM/GM) Inequality For ai > 0,
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• Cauchy-Schwarz Inequality
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If you know Linear Algebra, then the Cauchy-Schwarz Inequality simply amounts to
the fact that a · b ≤ ||a||||b|| for two vectors a and b in R

n. Alternatively, you can prove
it by expanding both sides, but you will then need to use the n = 2 case of the AM/GM
Inequality (which you should also be able to prove). One way to prove the full AM/GM
Inequality is to use Jensen’s Inequality (see later). The first inequality above, probably
the most useful, is just a special case of the Cauchy-Schwarz Inequality.
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Fact 1

Figure 1: Some famous inequalities

Sometimes none of these do the trick and you have to use something stronger, for
instance the

• Power Mean Inequality For ai > 0 and r < s with r 6= 0 and s 6= 0

(

1

n

n
∑

i=1

ar
i

)1/r

≤

(

1

n

n
∑

i=1

as
i

)1/s

In some sense (exercise) the AM/GM Inequality is the special case r = 0, s = 1, even
though, as stated, this case doesn’t seem to make any sense. The sum of squares inequality
is of course just the case r = 1, s = 2. All three inequalities are consequences of

• Jensen’s Inequality If f is convex (“concave-up”) on an interval I and ai ∈ I then for
weights λi summing to 1

f
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The case n = 2 is the definition of convexity, and the general case is not hard to prove
by induction (exercise). It is interesting that such a powerful inequality has such a short
proof: the big idea was to realize that such a statement might be true and would, if true, be
useful. The case 0 < r ≤ s of the Power Mean Inequality and the full AM/GM Inequality
follow from the convexity, for x > 0, of the functions f(x) = xs/r and f(x) = − log x
respectively.

The following inequality is frequently useful.
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• Rearrangement Inequality If a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn then for all
permutations σ of {1, 2 . . . , n}
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You should prove this for n = 2: the proof of the general case uses the same idea. An easy
consequence is

• Chebyshev’s Inequality If a1 ≤ a2 ≤ · · · ≤ an and b1 ≤ b2 ≤ · · · ≤ bn then
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It is also possible, but a bit tricky, to prove the AM/GM Inequality using the Rearrange-
ment Inequality. (The trick is to consider the numbers

a1/G, a1a2/G
2, . . . , a1a2 · · ·an/Gn = 1,

where G is the geometric mean.)
Other useful inequalities are the Triangle Inequality ||a+b|| ≤ ||a||+ ||b|| for vectors

a,b ∈ R
n, which you can prove for yourself, Hölder’s Inequality and Minkowski’s

Inequality. But we’ll discuss these some other time.

Examples

1. Prove that if a > 0 then

a +
1

a
≥ 2.

2. (Nesbitt’s Inequality) Prove that, for a, b, c > 0,
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3. (Putnam 1975) Show that if sn = 1 + 1
2

+ 1
3

+ · · ·+ 1
n
, then

(a) n(n + 1)1/n < n + sn for n > 1, and
(b) (n − 1)n−1/(n−1) < n − sn for n > 2.
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4. (Putnam 1977) Suppose that a1, a2, . . . , an are real (n > 1) and
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Prove that A < 2aiaj for 1 ≤ i < j ≤ n.

Homework

1. (Putnam 1961) Let α1, α2, α3, . . . be a sequence of positive real numbers; define sn as
(α1 + α2 + · · ·+ αn)/n and rn as (α−1

1 + α−1
2 + · · ·+ α−1

n )/n. Given that lim sn and lim rn

exist as n → ∞, prove that the product of these limits is not less than 1.

2. (Putnam 1988) Prove or disprove: if x and y are real numbers with y ≥ 0 and y(y+1) ≤
(x + 1)2, then y(y − 1) ≤ x2.
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