Inequalities

October 24, 2008

These are sometimes needed in the Putnam. Here is a basic toolkit.

- Sum of squares inequality

$$
\frac{1}{n} \sum_{i=1}^{n} a_{i} \leq\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}
$$

- Arithmetic-Mean-Geometric-Mean (AM/GM) Inequality For $a_{i}>0$,

$$
\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \leq \frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

- Cauchy-Schwarz Inequality

$$
\sum_{i=1}^{n} a_{i} b_{i} \leq\left(\sum_{i=1}^{n} a_{i}^{2}\right)^{1 / 2}\left(\sum_{i=1}^{n} b_{i}^{2}\right)^{1 / 2}
$$

If you know Linear Algebra, then the Cauchy-Schwarz Inequality simply amounts to the fact that $\mathbf{a} \cdot \mathbf{b} \leq\|\mathbf{a}\|\|\mathbf{b}\|$ for two vectors \mathbf{a} and \mathbf{b} in \mathbb{R}^{n}. Alternatively, you can prove it by expanding both sides, but you will then need to use the $n=2$ case of the AM/GM Inequality (which you should also be able to prove). One way to prove the full AM/GM Inequality is to use Jensen's Inequality (see later). The first inequality above, probably the most useful, is just a special case of the Cauchy-Schwarz Inequality.

Figure 1: Some famous inequalities

Sometimes none of these do the trick and you have to use something stronger, for instance the

- Power Mean Inequality For $a_{i}>0$ and $r<s$ with $r \neq 0$ and $s \neq 0$

$$
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{r}\right)^{1 / r} \leq\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{s}\right)^{1 / s}
$$

In some sense (exercise) the AM/GM Inequality is the special case $r=0, s=1$, even though, as stated, this case doesn't seem to make any sense. The sum of squares inequality is of course just the case $r=1, s=2$. All three inequalities are consequences of

- Jensen's Inequality If f is convex ("concave-up") on an interval I and $a_{i} \in I$ then for weights λ_{i} summing to 1

$$
f\left(\sum_{i=1}^{n} \lambda_{i} a_{i}\right) \leq \sum_{i=1}^{n} \lambda_{i} f\left(a_{i}\right)
$$

The case $n=2$ is the definition of convexity, and the general case is not hard to prove by induction (exercise). It is interesting that such a powerful inequality has such a short proof: the big idea was to realize that such a statement might be true and would, if true, be useful. The case $0<r \leq s$ of the Power Mean Inequality and the full AM/GM Inequality follow from the convexity, for $x>0$, of the functions $f(x)=x^{s / r}$ and $f(x)=-\log x$ respectively.

The following inequality is frequently useful.

- Rearrangement Inequality If $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ then for all permutations σ of $\{1,2 \ldots, n\}$

$$
\sum_{i=1}^{n} a_{\sigma_{i}} b_{i} \leq \sum_{i=1}^{n} a_{i} b_{i}
$$

You should prove this for $n=2$: the proof of the general case uses the same idea. An easy consequence is

- Chebyshev's Inequality If $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ then

$$
\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}\right)\left(\frac{1}{n} \sum_{i=1}^{n} b_{i}\right) \leq \frac{1}{n} \sum_{i=1}^{n} a_{i} b_{i}
$$

It is also possible, but a bit tricky, to prove the AM/GM Inequality using the Rearrangement Inequality. (The trick is to consider the numbers

$$
a_{1} / G, a_{1} a_{2} / G^{2}, \ldots, a_{1} a_{2} \cdots a_{n} / G^{n}=1
$$

where G is the geometric mean.)
Other useful inequalities are the Triangle Inequality $\|\mathbf{a}+\mathbf{b}\| \leq\|\mathbf{a}\|+\|\mathbf{b}\|$ for vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^{n}$, which you can prove for yourself, Hölder's Inequality and Minkowski's Inequality. But we'll discuss these some other time.

Examples

1. Prove that if $a>0$ then

$$
a+\frac{1}{a} \geq 2
$$

2. (Nesbitt's Inequality) Prove that, for $a, b, c>0$,

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b} \geq \frac{3}{2} .
$$

3. (Putnam 1975) Show that if $s_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$, then
(a) $n(n+1)^{1 / n}<n+s_{n}$ for $n>1$, and
(b) $(n-1) n^{-1 /(n-1)}<n-s_{n}$ for $n>2$.
4. (Putnam 1977) Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ are real $(n>1)$ and

$$
A+\sum_{i=1}^{n} a_{i}^{2}<\frac{1}{n-1}\left(\sum_{i=1}^{n} a_{i}\right)^{2} .
$$

Prove that $A<2 a_{i} a_{j}$ for $1 \leq i<j \leq n$.

Homework

1. (Putnam 1961) Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ be a sequence of positive real numbers; define s_{n} as $\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{n}\right) / n$ and r_{n} as $\left(\alpha_{1}^{-1}+\alpha_{2}^{-1}+\cdots+\alpha_{n}^{-1}\right) / n$. Given that $\lim s_{n}$ and $\lim r_{n}$ exist as $n \rightarrow \infty$, prove that the product of these limits is not less than 1 .
2. (Putnam 1988) Prove or disprove: if x and y are real numbers with $y \geq 0$ and $y(y+1) \leq$ $(x+1)^{2}$, then $y(y-1) \leq x^{2}$.
