The pigeonhole principle

October 17, 2008

- Basic version $\quad n+1$ items, n boxes \Rightarrow some box contains at least 2 items
- Advanced version $m n+1$ items, n boxes \Rightarrow some box contains at least $m+1$ items

Neither of these is particularly profound, but the trick is to know how to use them.

Examples

1. (Dirichlet, 1842, original application) Let α be a real number, and let $\varepsilon>0$. Then there exist integers p and $q>0$ such that

$$
\left|\alpha-\frac{p}{q}\right|<\frac{\varepsilon}{q} .
$$

Proof. Let $M>\frac{1}{\varepsilon}$. Apply the (basic) pigeonhole principle with items $0,\{\alpha\},\{2 \alpha\}, \ldots,\{M \alpha\}$ and boxes $[0,1 / M),[1 / M, 2 / M), \ldots,[(M-1) / M, 1]$.
2. (Putnam 1990) Prove that any convex pentagon whose vertices (no three of which are collinear) have integer coordinates must have area $\geq 5 / 2$.
3. (Putnam 1993) Let $x_{1}, x_{2}, \ldots, x_{19}$ be positive integers each of which is less than or equal to 93 . Let $y_{1}, y_{2}, \ldots, y_{93}$ be positive integers each of which is less than or equal to 19. Prove that there exists a (nonempty) sum of some x_{i} 's equal to a sum of some y_{j} 's.
4. (Putnam 1994) Let A and B be 2×2 matrices with integer entries such that $A, A+$ $B, A+2 B, A+3 B$, and $A+4 B$ are all invertible matrices whose inverses have integer entries. Show that $A+5 B$ is invertible and that its inverse has integer entries.

Homework

1. (Putnam 2000) Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume, for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exist integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of $j, 1 \leq j \leq N$.
2. (Putnam 2006) Prove that, for every set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of n real numbers, there exists a non-empty subset S of X and an integer m such that

$$
\left|m+\sum_{s \in S} s\right| \leq \frac{1}{n+1}
$$

