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Abstract. Motivated by information-theoretic secrecy, geometric models for se-

crecy in wireless networks have begun to receive increased attention. The general

question is how the presence of eavesdroppers affects the properties and perfor-

mance of the network. Previously the focus has been mostly on connectivity. Here

we study the impact of eavesdroppers on the coverage of a network of base stations.

The problem we address is the following. Let base stations and eavesdroppers be

distributed as stationary Poisson point processes in a disk of area n. If the cov-

erage of each base station is limited by the distance to the nearest eavesdropper,

what is the maximum density of eavesdroppers that can be accommodated while

still achieving full coverage, asymptotically as n → ∞?

1. Introduction

1.1. Motivation and related work

While coverage problems have been studied for several decades from a purely
mathematical perspective, they have recently begun to attract significant at-
tention by the engineering and computer science communities due to the ad-
vent of wireless networks, in particular sensor networks. The standard prob-
lem formulation is the following. Place a number n of nodes randomly in
a certain set B ⊂ R

d and equip each node with the capability of covering
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2 Internet Mathematics

(sensing) a disk or sphere of radius r around itself. How large should n be
to guarantee coverage of B with probability 1 − ǫ? Or, if the area or volume
of B is scaled in proportion to n, which r(n) guarantees coverage with high
probability as n → ∞?

In the mathematical literature, one of the early and now classical coverage
problems is the coverage of a sphere with circular caps introduced in [Moran
and de St. Groth 62] and solved in [Gilbert 65]. Extensions to k dimensions
were considered by Hall in [Hall 85] and Janson in [Janson 86]. Hall later
provided a detailed account of coverage processes in his book [Hall 88]. Many
generalizations have been considered since, see, e.g., [Athreya et al. 04, Roy 06]
for coverage problems in R

d.

In the sensor networking literature, the case of interest is mostly coverage
of (part of) the plane with disks of fixed or random radii or more random
shapes. To provide redundancy for robustness and also to let some sensor
nodes be asleep to save energy, single coverage is sometimes not sufficient
but k-coverage, k > 1, is required. Consequently, [Xing et al. 05] studies
the relationship between k-connectivity and k-coverage and suggests a sleep
scheduling algorithm to maintain coverage, while [Miorandi et al. 08] consid-
ers coverage and connectivity in the presence of channel randomness. [Kumar
et al. 08] provides a detailed analysis of conditions for k-coverage (of a unit
square) of a sensor network where most nodes are asleep. [Lazos and Pooven-
dran 06] studies coverage problems where the sensing areas are not restricted
to disks using results from integral geometry.

Here we focus on a coverage problem that is inspired by secrecy constraints.
We assume an information-theoretic model for secrecy, in which a communi-
cation is secure from eavesdroppers if the intended receiver is closer to the
transmitter than all eavesdroppers. The information-theoretic foundation for
this model is the so-called wiretap channel, where a source sends information
to a legitimate receiver in the presence of an eavesdropper. It was shown in
[Leung-Yan-Cheong and Hellman 78] that the secrecy capacity, the maximum
achievable rate of the transmission to the legitimate receiver while guaran-
teeing that the eavesdropper cannot decode the message, is the difference
of the two channel capacities. Hence if the transmitter is located at x, the
legitimate receiver at y, and the eavesdropper at z, the secrecy capacity is
Cs = max{0, Rs} for

Rs = C − Ce = log2

(

1 +
Pℓ(‖x − y‖)

W

)

− log2

(

1 +
Pℓ(‖x − z‖)

W

)

, (1)

where P is the transmit power, ℓ is a (strictly) monotonically decreasing path
loss function, and W is the power of the Gaussian noise at the receivers. So
whenever ‖x − y‖ < ‖x − z‖, the secrecy capacity is positive, and secure
communication is possible, albeit at a possibly small rate.
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Sarkar and Haenggi: Secrecy Coverage 3

Based on this model, the secrecy graph, a random geometric graph that only
includes edges along which secure communication is possible was introduced
and studied in [Haenggi 08]. [Pinto et al. 10] considered more elaborate phys-
ical layer models, while [Goel et al. 11] studied the effect of eavesdroppers
on network connectivity if the locations of the eavesdroppers are not known
precisely. In [Koyluoglu et al. 10], it is shown that as long as the density
of eavesdroppers goes to zero faster than (log n)−2 for a network with n le-
gitimate nodes, secrecy does not affect the 1/

√
n capacity scaling law. The

first rigorous bounds on the percolation threshold in the secrecy graph were
established in [Sarkar and Haenggi 11]. This line of work is based on graph
models and focuses on connectivity. In contrast, there is no prior work on the
related coverage problem, which is the theme of the present paper.

Base stations and eavesdroppers are distributed randomly on the plane,
and the base stations can cover circular areas with radii determined by the
distance to the nearest eavesdroppers. While these assumptions results in an
analytically tractable model, they are quite realistic. In fact, cellular networks
are now undergoing a major transition from carefully planned base station
deployments to an irregular heterogeneous infrastructure that includes micro-
base stations and femtocells [Dhillon et al. 11]. In [Andrews et al. 11] it
is shown that even without such small base stations, the results obtained
from a random model are as accurate or better than those obtained from a
lattice-based model for the base stations. The reason why a base station can
cover the disk-shaped area up to the nearest eavesdropper is that given the
distance to the furthest legitimate node within the disk, it can always choose
a positive rate of transmission such that the secrecy capacity (1) is positive.
The locations of the eavesdroppers remain uncovered, i.e., the disks are open
disks.

The main question is what density of eavesdroppers can be accommodated
while still guaranteeing that the entire area or volume of interest is covered
securely? This would ensure that mobile stations could roam around every-
where and be reached securely by a base station. Hence the downlink is
intrinsically secure, while the uplink (from the mobile to the base station) has
to be secured by transmission of a one-time pad via the downlink.

1.2. Problem formulation

To make the problem concrete, we assume that the base stations and eaves-
droppers form independent Poisson point processes of intensities 1 and λ,
respectively, in R

d. We will denote the process of base stations by P and
call its points black points, and the process of eavesdroppers by P ′ and call
its points red points. Now place an open ball D(p, rp) of radius rp around
each black point p ∈ P , where rp is maximal so that D(p, rp) ∩ P ′ = ∅. In
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Figure 1. Example for coverage of an 8 × 8 square for λ = 0.1. The base stations
are marked by +, the eavesdroppers by ×, and the covered area is grey shaded. The
locations of the eavesdroppers themselves cannot be covered.

other words, rp is the distance from the black point p to the nearest red point
p′ ∈ P ′ to p. We thus obtain a random set Ad

λ ⊂ R
d which is the union of

balls centered at the points of P . Fig. 1 shows a 2-dimensional example for
λ = 0.1. Our aim is to study properties of Ad

λ, in particular the covered vol-
ume fraction (Section 2) and the asymptotic conditions for complete coverage
in one (Section 3) and two (Section 4) dimensions.

In two dimensions, the radius R of each disk is given by the nearest-neighbor
distance, distributed as

fR(x) = 2πxλ exp(−λπx2) .

Note that this coverage problem is rather different from the case where the
covering disks have independent radii drawn from fR. The difference is that in
our case, the disk radii of nearby nodes are strongly correlated, which leads to
drastically different conditions for coverage compared with the independent
case. Indeed, for the standard model with random independent disk radius
and intensity 1, a disk of area n is covered a.s. if1

E(πR2) = (1 + ε) log n

1This condition is not the sharpest possible.
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Sarkar and Haenggi: Secrecy Coverage 5

for any ε > 0. Since E(πR2) = λ−1, this translates to

λ = [(1 + ε) log n]−1 ,

which indicates that λ may decrease rather slowly with n while still achieving
full coverage. In the secrecy case, however, λ has to decrease much faster, at
a rate of about n−1/3, as we will show.

1.3. Summary of main results

Our main results, in Sections 3 and 4, concern the probability pd
λ(n) that a

fixed ball Bd
n ⊂ R

d of volume n is covered by Ad
λ (except for the points of P ′).

In Section 3, we take d = 1, and in Section 4 we take d = 2. The results are
as follows:

Theorem 1. If n → ∞ with λn → ∞, then p1
λ(n) ∼ e−4nλ2

. Consequently,
if λ2n → ∞, then p1

λ(n) → 0, and if λ2n → 0, then p1
λ(n) → 1.

Theorem 2. If f(n) = λ3n → ∞, then p2
λ(n) → 0.

Theorem 3. If g(n) = λ3n(log n)3 → 0, then p2
λ(n) → 1.

Note that, in contrast to the situation for percolation [Sarkar and Haenggi 11],
we need λ to tend to 0 at a certain rate (as n → ∞) in order to achieve cover-
age with high probability. Furthermore, it is entirely possible that Theorem 3
gives a better indication of the threshold required for coverage than Theo-
rem 2. If so, this would run counter to our initial intuition regarding the
obstructions to coverage in two dimensions.

2. Covered volume fraction

For λ > 0, write

Cd(λ) = P(O ∈ Ad
λ).

By stationarity of the model, Cd(λ) can also be interpreted as the fraction of
R

d which is covered by Ad
λ, known as the covered volume fraction.

Theorem 4.

Cd(λ) = 1 − E(e−Vd/λ) = 1 −
∫

∞

0

fd(t)e
−t/λ dt,
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where fd(t) is the probability density function for the volume Vd of a randomly
chosen cell in a Voronoi tessellation associated with a unit intensity Poisson
process in R

d.

Proof. We rescale the model so that P and P ′ have intensities 1/λ and 1
respectively. This does not affect Cd(λ). Now O 6∈ Ad

λ if and only if there are
no points of P in the Voronoi cell C defined by P ′ ∪ {O} containing O. If C
has volume V , then P(C ∩ P = ∅) = e−V/λ.

Corollary 5. In one dimension, we have

C1(λ) =
1 + 4λ

(1 + 2λ)2
.

Proof. Let P be a unit intensity Poisson process in R. The distribution of the
gap lengths between points of P has density e−t, but the distribution of the
length of the gap containing a fixed point, such as the origin O, has density
te−t. (This is known as the waiting time paradox.) Consequently, the density
function for the length of the Voronoi cell defined by P containing the origin
is 4te−2t, so that by Theorem 4

C1(λ) = 1 −
∫

∞

0

4te−2t−t/λ dt =
1 + 4λ

(1 + 2λ)2
.

Remark. This corollary can also be proved as follows. Let L be the event
that the origin O is covered by points of P lying only to the left of O, and let
R be the event that O is covered by points of P lying only to the right of O.
Then L and R are independent, and

C1(λ) = 1 − (1 − P(L))(1 − P(R)) = 1 − (1 − P(R))2 = 2P(R) − P(R)2,

by symmetry. Now R occurs if and only if the closest black point to the right
of O is at distance t, and there are no red points in the interval [0, 2t], for
some t > 0. Thus

P(R) =

∫

∞

0

e−te−2λt dt =
1

2λ + 1
,

which gives the desired result.

3. Probability of total coverage in one dimension

In this and the next section, we study the following problem. With P ,P ′ and
Ad

λ as before, let Bd
n ⊂ R

d be a fixed ball of volume n, and set Ad
λ(Bd

n) =
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Sarkar and Haenggi: Secrecy Coverage 7

Ad
λ ∩ Bd

n. Write Bd
λ(n) for the event that Ad

λ(Bd
n) covers Bd

n (except for the
points of P ′), and set pd

λ(n) = P(Bd
λ(n)). Our principal goal is to estimate

pd
λ(n) for arbitrary d.

Let us first consider the case d = 1. In this case, I = B1
n is simply an interval

of length n, containing some black and red points. We place an interval
centered at each black point of maximal length subject to containing no red
points, and ask for the probability that I is covered by such intervals. Clearly,
a necessary condition for coverage is that I contains no two consecutive red
points, for then the entire interval between these points will not be covered.
(This condition is not, however, sufficient.) Writing X for the number of pairs
of consecutive red points (where, for instance, three consecutive points count
as two pairs), it is easy to see that if λ = o(1)

E(X) ∼ λn · λ

1 + λ
∼ λ2n.

Now p1
λ(n) = P(B1

λ(n)) ≤ P(X = 0), and a standard coupling argument
shows that P(X = 0) is decreasing in λ. Suppose that λ2n → c. For fixed
instances of P and P ′, number the points of P∪P ′ inside B1

n as p1, p2, . . . , pM

from left to right. Write XO for the number of pairs of red points of the
form (p2i−1, p2i), and XE for the number of pairs of red points of the form
(p2i, p2i+1). With high probability (whp), M satisfies |M − n| ≤ n2/3. Using
the coloring theorem [Kingman 93], we may obtain P and P ′ by first placing
the points pi according to a Poisson process of intensity 1 + λ, and then
coloring the points red or black independently, with respective probabilities
p = λ

1+λ and 1 − p = 1
1+λ . Since λ3n → 0, it should follow that

p1
λ(n) ≤ P(XO = 0)P(XE = 0)(1 + o(1)) = ((1 − p2)n/2)2(1 + o(1)) → e−c,

and indeed the conclusion that p1
λ(n) is asymptotically at most e−c does fol-

low from the Janson inequality (see, for instance, Chapter 8 of [Alon and
Spencer 08]). (The above inequality is hard to establish since the random
variables XO and XE aren’t quite independent.) In fact, one can use the
Stein-Chen method [Barbour and Chen 05] to show that X → Po(c) in dis-
tribution. Consequently, if now λ2n → ∞, then p1

λ(n) → 0.

Next suppose that λ2n → 0. Our aim is to show that in this case p1
λ(n) → 1.

To simplify our analysis, let us suppose that P and P ′ are placed on a circle T
of circumference n rather than an interval of length n: there is asymptotically
no difference. Our strategy is to place the red points P ′ first, partitioning the
circle T into M ∼ Po(nλ) arcs Ai. Now place the black points P . For each
arc Ai, let Ci be the event that Ai is covered by the smaller arcs associated
with the black points in Ai. The events Ci are independent, and this will
enable us to estimate p1

λ(n).
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Suppose Ai has length ℓ, and let mi be the midpoint of Ai. Let x be the
distance of the closest black point to mi lying on the left of mi, and let y be
the distance of the closest black point to mi lying on the right of mi. Whether
or not Ci occurs, i.e., whether or not Ai is covered by small arcs, is determined
solely by x and y. In fact, it is easy to see that

• Ci occurs if and only if x + y ≤ ℓ/2.

Now x + y has the gamma distribution with density function te−t, and con-
sequently

P(Ci|Ai has length ℓ) =

∫ ℓ/2

0

te−t dt = 1 − e−ℓ/2(1 + ℓ/2). (1)

Further, since the black and red points are independent, and the length ℓ has
an exponential distribution with density function λe−λt, we have

P(Ci) =

∫

∞

0

λe−λℓ(1 − e−ℓ/2(1 + ℓ/2)) dℓ =
1

(1 + 2λ)2
.

Conditioning on the number of arcs M changes the distribution of the
lengths of the Ai, but the difference is asymptotically negligible. Conse-
quently, as n → ∞ with λ2n → 0 but λn → ∞,

p1
λ(n) ∼

∞
∑

m=0

P(M = m)(2λ + 1)−2m ∼ e−4nλ2(λ+1)/(2λ+1)2 ∼ e−4nλ2 → 1,

as required.
Note. In the light of the second half of the proof (λ2n → 0), the first half

is superfluous, but it illustrates an alternative method.
We summarize these results as a theorem.

Theorem 1. If n → ∞ with λn → ∞, then p1
λ(n) ∼ e−4nλ2

.

4. Probability of coverage in two dimensions

4.1. Analysis

Our next aim is to generalize these results to arbitrary d. Simple heuristics
(see later) suggest that if λd+1n → 0 then pd

λ(n) → 1, and if λd+1n → ∞ then
pd

λ(n) → 0. Unfortunately, attempts to generalize the above arguments run
into difficulties, mainly due to the lack of an order structure in R

d for d ≥ 2.
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The most natural analogue of the above argument (for λ2n → 0) involves the
Delaunay simplices corresponding to the process P ′. Points p1, . . . , pd+1 ∈ P ′

form a simplex in the Delaunay tessellation for P ′ if their closed circum-
hypersphere (circumcircle for d = 2) contains no other points of P ′. The
useful feature when d = 1, where the Delaunay simplices are just intervals, is
that events corresponding to the coverage of distinct simplices are indepen-
dent. When d ≥ 2, it is entirely possible for a Delaunay simplex S to remain
uncovered by balls originating from black points inside S, but to be covered by
Ad

λ nonetheless. In other words, balls originating from black points outside S
might be needed to cover S. This destroys the independence. One might hope
to prove a bound by restoring independence and considering the event that
S is covered by balls originating inside S. However, it is the balls originating
near the circumcenter of S which are likely to be most useful in covering S,
and the circumcenter of S may well lie outside S.

Consequently, we turn instead to the Voronoi tessellation corresponding to
P ′.

Lemma 6. With fd(t) as in Theorem 4, if

nλ

∫

∞

0

fd(t)e
−t/λ dt → ∞

then pd
λ(n) → 0.

Proof. As in Theorem 4, we rescale the model so that P and P ′ have intensities
1/λ and 1 respectively. Consider the Voronoi tessellation V formed from
the red points P ′. If there is a single Voronoi cell Cp ∈ V containing no
black points, i.e., if Cp ∩ P = ∅ for some Cp ∈ V , then the red point p
corresponding to Cp, and a small open neighborhood of p, will not be covered
by Ad

λ. Consequently, the probability that an arbitrary Voronoi cell is not
completely covered is at least the probability that its red point isn’t covered,
which is just 1 − Cd(λ) =

∫

∞

0 fd(t)e
−t/λ dt. Writing X for the number of

Voronoi cells which aren’t covered by Ad
λ, and Y for the number of Voronoi

cells whose red points aren’t covered by Ad
λ, we have

E(X) ≥ E(Y ) ∼ nλ

∫

∞

0

fd(t)e
−t/λ dt → ∞,

by hypothesis. (Note that, due to the rescaling, Bd
n now has volume nλ.) A

simple application of the second moment method now shows that pd
λ(n) =

P(X = 0) → 0.

There are two problems with this lemma. First, fd(t) is only known when
d = 1 (although see [Tanemura 03] for simulation results, and [Zuyev 92] for
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rigorous partial results). Second, when d = 1, the bound misses the truth by
an order of magnitude. Indeed, when d = 1, we have

nλ

∫

∞

0

fd(t)e
−tλ dt = nλ

∫

∞

0

4te−2t−t/λ dt =
4nλ3

(1 + 2λ)2
,

so that we would need λ3n → ∞, rather than the weaker λ2n → ∞, to deduce
p1

λ(n) → 0. The reason for this is that the obstructions to coverage are not
empty Voronoi cells, but rather Voronoi cells without sufficiently many black
points to “hit” the central red point from all sides (i.e., from both sides in the
case d = 1).

We turn to the issue of obtaining a useful sufficient condition for cover-
age. A first step in this direction is given by the following lemma, which for
simplicity’s sake we state and prove for the case d = 2.

Lemma 7. Let d = 2. Let V be the Voronoi tessellation formed from the
red points P ′. Let S be the set of vertices of V (these are the corners of the
Voronoi cells). If S ⊂ P, i.e., if there is a black point at each vertex of V,
then full coverage occurs.

Proof. Suppose the hypothesis holds, and let Cp ∈ V be a fixed Voronoi cell.
Let v1, . . . , vm be the vertices of Cp, and divide Cp into triangles

v1pv2, v2pv3, . . . , vmpv1.

Since there are black points at each of the vi, it follows that each triangle
vipvi+1 is covered by the disks D(vi, ‖vi − p‖) and D(vi+1, ‖vi+1 − p‖). Con-
sequently, Cp ⊂ ⋃

i D(vi, ‖vi − p‖), and, since Cp was arbitrary, full coverage
occurs.

Of course, the event that S ⊂ P has probability zero, but one might hope
that the existence, within each cell, of a black point sufficiently close to each
vertex of that cell would suffice for coverage. Indeed, only the “nearest” few
points to each vertex matter, as in the case d = 1. However, how close is
“sufficiently close” depends on random variables connected with both the size
and shape of a typical cell, and little is known about these.

For the rest of the paper, we restrict attention to the case d = 2. It turns
out to be useful to consider the Gilbert disk model on the red points P ′, with
an appropriately chosen radius. This model is constructed by simply joining
two points of P ′ if the distance between them is less than some specified
threshold.

Theorem 2. If f(n) = λ3n → ∞, then p2
λ(n) → 0.
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Proof. Suppose that n → ∞ and also that λ3n → ∞. Let R > 0 be a large
constant. Construct the Gilbert disk model G = GR(P ′) on the red points
P ′, with radius R (i.e., we join two points of P ′ if they are within distance
R). Let T be the (random) number of triangles in G which lie entirely within
B2

n. Then, for some absolute constant C1,

E(T ) ∼ C1(λπR2)2λn =
(

C1π
2R4 + o(1)

)

λ3n → ∞.

Similarly, if T1 denotes the (random) number of triangles in G which lie en-
tirely inside B2

n and have all angles between π/6 and π/2, then also E(T1) →
∞. Finally, putting in the black points P , and writing T2 for the number of
triangles counted in T1 which are not within distance 1000R of a black point,
we have that E(T2) → ∞. A simple application of the second moment method
shows that P(T2 ≥ 1) → 1 (this is intuitively obvious from E(T2) → ∞ due
to the long-range independence of the model). However, any red triangle
counted in T2 will have points in its interior which are not covered by black
disks. Since with high probability T2 ≥ 1, we have that p2

λ(n) → 0.

The other direction seems to require a more elaborate argument (and a
stronger hypothesis).

Theorem 3. If g(n) = λ3n(log n)3 → 0, then p2
λ(n) → 1.

Proof. Suppose that n → ∞ and also that g(n) = λ3n(log n)3 → 0. Once
again, we construct the Gilbert disk model G = GR(P ′) on the red points P ′,
but this time R = R(n) will be a function of n. As long as R(n) is not too
large, there will be (up to a constant) λn vertices, R2λ2n edges and R4λ3n
triangles in G inside B2

n. We will show that R(n) can be chosen so that:

(I) The maximum degree of G is one.

(II) The region of B2
n close to points of P ′ is covered (by A2

λ).

(III) The rest of B2
n, far from points of P ′, is covered (by A2

λ).

Condition (I) simply states that G consists of isolated vertices and isolated
edges. It is (II) and (III) which necessitate the stronger hypothesis. We will
define a set of bad events, which will depend on P and P ′, and show that
coverage (by A2

λ) occurs in the absence of bad events. We will then show that
the probability of at least one bad event occurring tends to zero.

First, we overlay a grid of squares of side length r =
√

log n onto B2
n. The

probability that any small square of the grid contains no point of P is e− log n =
n−1. Since there are ∼ n/ logn such squares, the expected number of them
containing no black points is asymptotically 1/ logn → 0. Consequently, with
high probability, every small square contains a black point. Now fix a small
square S. If no point of S is within distance

√
2 log n of a red point, and if
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S contains a black point, then all of S will be covered by A2
λ. Consequently,

with high probability, any point of B2
n at distance more than

√
8 log n from

all red points will be covered by A2
λ. Our first type of bad event will be that

some square S of the grid contains no black points: if no such event occurs
then we may assume that points at distance

√
8 log n from P ′ are covered.

This deals with (III).
Take R(n) = 1000

√
log n. Our second bad event will be that G contains

vertices of degree at least 2. Write W for the number of such vertices in G
(within B2

n). Then

E(W ) ∼ 1

2
e−λπR2

(λπR2)2λn =
(

5 · 1011π2(log n)2 + o(1)
)

λ3n → 0,

so that P(W = 0) → 1. This deals with (I).
It remains to deal with (II). From now on, we may assume that G has only

isolated vertices and isolated edges (inside B2
n). Recall that we need only

worry about the coverage of points within distance
√

8 logn from a red point:
we will color all such points yellow.

First we deal with the isolated vertices. Consider the circles of radii 10
√

log n
and 11

√
log n around each isolated red point, and divide the annulus between

these circles into 10 equal “sectors”. With high probability, there is a black
point inside each sector. But then the yellow region surrounding the red point
is covered.

Next we turn to the edges. Consider a fixed red edge p1p2, where we
may assume p1 = (0, 0) and p2 = (0, t). A similar argument to the one
in the above paragraph takes care of the yellow points whose x-coordinates
lie outside the interval [0, t]. However, coverage of the yellow points in the
rectangle [0, t]×[−√

8 log n,
√

8 logn] is not guaranteed. In particular, we need
to show that the yellow points lying on the edge p1p2 itself are covered. Write

M = max

{

50 logn

t
, 10

√

log n

}

,

and consider the region

R+ = [0, t] × [M, M + 10t−1 log n]

and its reflection R− in the x-axis. R+ and R− both have area 10 logn. For the
purposes of covering the yellow points in the strip [0, t]× [−√

8 log n,
√

8 logn],
only the x-coordinates of black points in R+ and R− matter. (The reason
behind the choice of M is that we want to ensure that disks originating from
black points inside R+ and R− have almost equal radii, and these radii should
also be at least 10

√
log n. This second requirement is so that coverage of the

yellow regions follows from coverage of p1p2 = [0, t] from both sides: see Fig. 3)
Assuming for the moment that all such black points give rise to disks which are
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stopped by either p1 or p2, we can proceed as follows. We project the points
of R+ and of R− to the edge p1p2 = [0, t], where they form two separate
Poisson processes, each of intensity 10t−1 log n, on an interval of length t. For
coverage purposes, these are equivalent to two processes of intensity 1 on an
interval of length 10 logn, and so from (1) we see that coverage of the relevant
yellow points occurs with probability

(1−e−5 log n(1+5 logn))2 = (1−n−5(1+5 logn))2 > 1−12n−5 log n > 1−n−4,

for sufficiently large n. In other words, coverage fails with probability at
most n−4, and since with high probability there are fewer than

√
n edges

in G, the expected number of edges with uncovered yellow points tends to
zero. Consequently, with high probability, all yellow points near all edges of
G inside B2

n are covered.

However, we still have to justify the assumption that disks from black points
in R+ and R− are stopped by either p1 or p2. Write t0 = 1 and ti+1 = 2ti
for all i ∈ Z. If there was an edge p1p2 inside B2

n and a third red point
stopping a disk originating in either R+ or R− (each corresponding to p1p2),
then, for some i ∈ Z, there would be a red point (p1), another red point
within distance ti of the first (p2), and a further red point, the “stopping
point”, within distance 200t−1

i log n of the first point, all inside B2
n. But the

probability of this occurring for some i is at most

C′ log log n
∑

i=−C log n

λn · λπt2i · 40000λπt−2
i (log n)2 ≤ C′′λ3n(log n)3 → 0,

by hypothesis. (In bounding the number of terms in the above sum, we used
the fact that with high probability all edges in G inside B2

n have length at
least n−1/7.)

4.2. Simulation results

Here we provide two simulation results, see Fig. 2, which give an indication of
the fraction of the area that remains uncovered if the condition in Theorem 2
holds, and how quickly this fraction goes to zero if the condition in Theorem 3
holds. Although these are estimates of the covered volume fraction, rather
than the probability of coverage, there does appear to be a noticeable differ-
ence in behavior between the cases λ3 = n−0.9 and λ3 = n−1(log n)−3. We
hope to investigate this further in future work.
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5. Conclusions

We have introduced a novel class of coverage problems, where the size of the
covering disks is determined by the distance to the nearest point in a second
point process. In the Poisson-Poisson case, where black and red points are
independent Poisson point processes, we have provided expressions for the
covered volume fraction and the probability of complete coverage in the one-
and two-dimensional cases.

The main result is the asymptotic threshold for coverage in two dimensions.
For

λ3n(log n)3 → 0 , n → ∞ ,

full coverage is achieved with probability tending to 1. On the other hand, if

λ3n → ∞ , n → ∞ ,

then the probability of full coverage tends to 0.
The model can be viewed as a germ-grain model with germs of random and

correlated size.
The results have applications in secure wireless networking. If the red points

are eavesdroppers and the black point base stations, then full coverage in our
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Figure 2. Simulation results for Theorem 2 and Theorem 3. The top curve,
marked with ×, is for λ3 = n−0.9. The bottom curve, marked with �, is for λ3 =
n−1(log n)−3. In this case, the function g(n) in Theorem 3 is a constant. The curves
in between are λ3 = n−1, λ3 = n−1(log n)−1, and λ3 = n−1(log n)−2, marked with
◦, ∇, and ∗, respectively.
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Figure 3. Illustration for Theorem 3. Shown are the rectangle [0, t] ×
[−

√
8 log n,

√
8 log n] (center) and R+ and R− for n = e10 and t = 1.8, 12.6, 31.6.

For small t (left), the regions R+ and R− are essentially line segments, perpendic-
ular to p1p2. Also included are four randomly placed black points in R+ with their
coverage disks.

model implies that from all points of the plane, messages can be received from
at least one base station securely, without any eavesdropping.
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