Graph Theory: Homework Set 2

October 24, 2008

1. Determine the edge chromatic number of $K_{m, n}$.
2. Prove that a regular graph of degree 5 cannot be decomposed into subgraphs, each isomorphic to a path of length 6 .
3. Let \bar{G} denote the complement of G (on the same vertex set as G). Show that

$$
\chi(G)+\chi(\bar{G}) \geq 2 \sqrt{n}
$$

4. Show that a graph of order n and size $(k-1) n-\binom{k}{2}+1$ contains every tree of order $k+1$.
5. Show that a graph with n vertices and minimum degree $\left\lfloor\frac{(r-2) n}{r-1}\right\rfloor+1$ contains a K_{r}.
6. Let $\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{n}} \in \mathbb{R}^{d}$ for some d. Suppose that $\left\|\mathbf{x}_{\mathbf{i}}\right\|=1$ for all i. Prove that there are at most $\left\lfloor n^{2} / 4\right\rfloor$ unordered pairs i, j such that $\left\|\mathbf{x}_{\mathbf{i}}+\mathbf{x}_{\mathbf{j}}\right\|<1$.
[Hint. Show that $\left\|\mathbf{x}_{\mathbf{i}}+\mathbf{x}_{\mathbf{j}}\right\| \geq 1$ for some $1 \leq i<j \leq 3$.]
7. Prove that the Ramsey number $R(3,4)$ is 9 .
8^{*}. By considering the graph on the integers modulo 17 in which i is joined to j iff $i-j$ is a square $\bmod 17$ (i.e. $1,2,4,8,9,13,15$ or 16), prove that $R(4,4)=18$.
