Graph Theory: Homework Set 1

October 8, 2008

- 1. Show that in any graph the number of vertices of odd degree is even.
- 2. Prove that every graph contains two vertices of equal degree.
- 3. Find a graph with 5 vertices and exactly 22 cycles.
- 4. Let G be a graph with n vertices. Prove that if $e(G) > \binom{n-1}{2}$ then G is connected.
- 5. Show that any graph G has at least $\binom{\chi(G)}{2}$ edges.

6. For each $k \geq 3$, find a bipartite (i.e. 2-colourable) graph G_k , and an ordering $v_1, \ldots, v_{n(k)}$ of its vertices, such that the greedy algorithm uses k colours to colour G_k (when its vertices are coloured in the order $v_1, \ldots, v_{n(k)}$).

7. Given a graph G, order its vertices in such a way that the greedy algorithm uses only $\chi(G)$ colours to colour G.

8. How many ways are there of seating n ladies and n gentlemen around a circular table with 2n seats, in such a way that ladies and gentlemen alternate? Reformulate this as a problem in graph theory (and solve it).

 9^* . How many ways are there of seating *n* married couples around a circular table with 2n seats, in such a way that nobody sits next to their spouse? (**Hint.** Use the inclusion-exclusion formula.)

10^{*}. How many ways are there of seating n married couples around a circular table with 2n seats, in such a way that ladies and gentlemen alternate *and* nobody sits next to their spouse? (This is the famous *problème des ménages.*)