
Van der Waerden’s Theorem

Van der Waerden’s theorem states the following.

Theorem 1. A finite coloring of N contains arbitrarily long monochromatic arithmetic
progressions.

We will in fact prove a seemingly stronger theorem (which is actually equivalent to the
theorem above, by “compactness”).

Theorem 2. For all positive integers k and r, there exists a least integer W (k, r) such
that any r-coloring of [W (k, r)] contains a k-term monochromatic arithmetic progression.

Proof. The key to the proof is the idea of color-focusing. Suppose A1, A2, . . . , As are
disjoint arithmetic progressions of length k− 1, where Ai = {ai, ai +di, . . . , ai + (k− 2)di}.
The Ai are said to be focused at f if, for all i, ai + (k − 1)di = f . In other words, f is the
“missing” kth term of each of these progressions. Further, if, in some coloring, each Ai

is monochromatic, with each Ai receiving a different color, then the progressions together
are said to be color-focused at f . The point is that, when s = r, an r-coloring (of N, say)
containing a set of r color-focused arithmetic progressions A1, A2, . . . , Ar, each of length
k − 1, must contain a monochromatic arithmetic progression of length k. This is because
the common focus f of the Ai must receive one of the r colors, whereupon it extends one
of the (k − 1)-term monochromatic progressions to length k.
From now on, we will write AP for arithmetic progression, and MAP for monochromatic
arithmetic progression.
Another important idea in this proof is the use of double induction. The main “outer”
induction is on k. But, for fixed k and a given r, we will establish the finiteness of
W (k, r) using an inductive argument in which we’ll assume the finiteness of certain numbers
W (k − 1, t), where t will typically be much, much larger than r. Also, for fixed r, our
inductive step will also use induction (but on a new variable s, related to the discussion
above).
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Now to the proof itself. By the pigeonhole principle, W (2, r) = r + 1 for all r. Next,
suppose we know that W (k − 1, t) is finite for all t. Our aim is to show that, for a fixed
r, W (k, r) is also finite.
To do this, we will show, for each s ≤ r, the existence of a number V (k, r, s) such that any
r-coloring of [V (k, r, s)] contains either

• A MAP of length k, or

• A set A1, A2, . . . , As of color-focused (k−1)-term MAPs, together with their common focus.

The case s = 1 is trivial: just take V (k, r, 1) = 2W (k − 1, r). Assume that we know that
V (k, r, s− 1) is finite. I claim that

V (k, r, s) ≤ 2V (k, r, s− 1)W (k − 1, rV (k,r,s−1)).

Here is why: suppose we are given an r-coloring of [N ], where N = 2V (k, r, s− 1)W (k −
1, rV (k,r,s−1)). We break the coloring up into 2W = 2W (k−1, rV (k,r,s−1)) “blocks” of length
V = V (k, r, s− 1). There are rV ways to color each block, so, by construction (this is the
induction on k), there is a progression of identically colored blocks Bl, Bl+m, . . . , Bl+(k−2)m

of length k − 1 among the first W blocks, whose kth term is also among the 2W blocks
colored.
Now we look inside each (identically colored) block Bl+jm. By hypothesis (this is the
induction on s), we can find s− 1 color-focused progressions of length k− 1, together with
their focus, within each such block. Suppose that, in color i (where 1 ≤ i ≤ s− 1) and in
block l + jm (where 0 ≤ j ≤ k − 2), the progression is:

{ai + jmV, ai + di + jmV, . . . , ai + (k − 2)di + jmV }, with focus f + jmV.

Unless we have a monochromatic k-term progression, all the foci f + jmV (where 0 ≤ j ≤
k − 2) are colored with a new color: s, say. Finally, writing

Ai =

{
{ai, ai + (di + mV ), ai + 2(di + mV ), . . . , ai + (k − 2)(di + mV )} 1 ≤ i ≤ s− 1

{f, f + mV, f + 2mV, . . . , f + (k − 2)mV } i = s,

we observe that A1, A2, . . . , As form a set of s color-focused progressions of length k − 1,
with common focus f + (k − 1)mV ≤ N .
This completes the (“inner”) induction on s. For the “outer” induction on k, note that,
by the argument at the start of this proof, we must have W (k, r) ≤ V (k, r, r).
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