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Bootstrap percolation (Chalupa, Leath, Reich 1979)

Start with an n × n grid Sn

A0 ⊂ Sn: sites initially infected independently with probability p

A0 ⊂ A1 ⊂ Sn: simultaneously, sites with at least two out of four
neighbors in A0 become infected

Repeat to get A2,A3, . . .

What is A∞ =
⋃

t≥0 At? Is it Sn?
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Bootstrap percolation (Chalupa, Leath, Reich 1979)

Start with an n × n grid Sn

A0 ⊂ Sn: sites initially infected independently with probability p

A0 ⊂ A1 ⊂ Sn: simultaneously, sites with at least two out of four
neighbors in A0 become infected

Repeat to get A2,A3, . . .. What is A∞ =
⋃

t≥0 At? Is it Sn?

Holroyd (2003) Sharp metastability threshold at p log n = π2/18
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Bootstrap percolation (Chalupa, Leath, Reich 1979)

Start with an n × n grid Sn

A0 ⊂ Sn: sites initially infected independently with probability p

A0 ⊂ A1 ⊂ Sn: simultaneously, sites with at least two out of four
neighbors in A0 become infected

Repeat to get A2,A3, . . .. What is A∞ =
⋃

t≥0 At? Is it Sn?

Holroyd’s results were extended to other dimensions d and
thresholds s by Balogh, Bollobás, Duminil-Copin and Morris (2012)
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Bootstrap percolation (Chalupa, Leath, Reich 1979)

Start with an n × n grid Sn

A0 ⊂ Sn: sites initially infected independently with probability p

A0 ⊂ A1 ⊂ Sn: simultaneously, sites with at least two out of four
neighbors in A0 become infected

Repeat to get A2,A3, . . .. What is A∞ =
⋃

t≥0 At? Is it Sn?

Janson,  Luczak, Turova and Vallier (2012) studied the model on
Erdős-Rényi random graphs G (n, q)
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Random geometric graphs (Gilbert 1961)

Vertices (nodes) are a Poisson process of intensity 1
Edges join vertices at distance less than r
Gilbert’s motivation: communications networks
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Percolation

Hall (1985) 0.833 < rperc < 1.836
Balister, Bollobás and Walters (2005) 1.1978 < rperc < 1.1989
- semi-rigorous, high confidence result
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Connectivity

Penrose (1997) πr2conn(n) = log n
Obstruction to connectivity: isolated vertices
At the threshold, E(isolated vertices) = 1
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The Bradonjić-Saniee model (2014)

Start with the Gilbert model in a torus Tn of area n, above the
connectivity threshold

πr2 = a log n with a > 1

Initially infect vertices independently with probability p: this is A0

Each vertex expects
a log n neighbors
ap log n infected neighbors

At := set of infected vertices at time t
In each discrete time step (t = 1, 2, . . .)

For each v /∈ At (i.e. each uninfected v)
If v has at least aθ log n infected neighbors
• v becomes infected (and stays infected forever)

Repeat for each vertex v to get At+1

Repeat for each t to get A∞

What proportion |A∞|/n of the graph eventually becomes infected?
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Motivation

• Activation of neurons

• Economic networks

• Social networks

• Spread of viruses

Mathematical motivation

Extend methods developed to study connectivity in:

• the Gilbert model

• the k-nearest neighbor model
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The percolative regime

What if πr2 = a and the infection threshold is k?

Theorem (Whittemore 2021)

Define

p∗ =
1

n1/ka1−1/k

Then for 1� a� n and p/p∗ → 0 whp no initially inactive vertex
becomes infected, but for 1 � a � n and p/p∗ → ∞ whp almost
every initially uninfected vertex becomes infected.

Theorem (Whittemore 2021)

For 1� a� n and p/p∗ = γ, there exists α = α(γ) such that

α ≤ P(A1 6= A0) ≤ 1− α
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Theorem (Bradonjić and Saniee 2014)

For x > 0, define
J(x) = log x − 1− 1/x

and write J−1R for the inverse of J on [1,∞]. Then if

p < p′ = θ/J−1r (1/aθ)

then no initially uninfected vertex becomes infected.

Theorem (Bradonjić and Saniee 2014)

If

p > p′′ = min

{
θ,

5πθ

J−1r (1/aθ)

}
then every initially uninfected vertex becomes infected.
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Theorems (Falgas-Ravry and S 2022+)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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Basic orientation - the threshold θ = p
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Basic orientation - the threshold θ = p

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

If θ < p, almost everything becomes infected immediately.

If θ > p, almost no new infections occur initially.
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A useful lemma
Let A ⊂ Rd be measurable, and let ρ ≥ 0 be a real number such
that ρ|A| ∈ Z. Then the probability that a Poisson process in Rd

with intensity 1 has precisely ρ|A| points in the region A is given by

exp
{

(ρ− 1− ρ log ρ)|A|+ O(log+ ρ|A|)
}

with the convention that 0 log 0 = 0, and log+ x = max(log x , 1).
We will usually apply this lemma when |A| = C log n, so that the
relevant probability will be approximated by

n−C(ρ−1−ρ log ρ)

-1

10
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The starting threshold θ = θstart(p)

θ
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θ

p
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No percolation

Sometimes, even when the threshold θ is much greater than p,
some uninfected vertices will see aθ log n infected neighbors,
despite only expecting to see only ap log n.

This will happen when

fstart(a, p, θ) = a(p − θ + θ log(θ/p)) < 1

Amites Sarkar Bootstrap Percolation in Random Geometric Graphs



The simple stopping threshold θ = θstop
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The simple stopping threshold θ = θstop

θ

p

θ = θstart
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θ = 1+p
2

No percolation
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Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

On the other hand, some initially uninfected vertices will not even
have aθ log n neighbors, despite only expecting to see a log n.
These vertices can never become infected.

This will happen when

fstop(a, θ) = a(1− θ + θ log θ) < 1
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The growing threshold θ = 1+p
2

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation
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Almost no percolation

No percolation
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The growing threshold θ = 1+p
2

Fully infected Infection rate = p

1 p

When infections have broken the logarithmic barrier, they will grow
as long as

θ <
1 + p

2

Though intuitive, this is nontrivial to prove.
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Main theorem
Let a, θ, p be fixed. Then the following hold.

1 If θ < 1+p
2 , then there exists a constant C = C (a, θ, p) such

that w.h.p. if any ball B in T 2
n of radius Cr is infected (either

artificially or as a result of the bootstrap percolation process),
then all but o(n) vertices of G 2

n,r eventually become infected.
Furthermore, when the infection stops, all connected
components of uninfected vertices in G 2

n,r [P \ A∞] have
Euclidean diameter O(

√
log n) in T 2

n .

2 If θ > 1+p
2 , then for every constant C > 0, w.h.p. even if one

adversarially selects a ball B in T 2
n of radius Cr and infects all

the vertices it contains, only o(n) additional vertices of G 2
n,r

become infected in the bootstrap percolation process starting
from the initially infected set A0 ∪ (B ∩ P).
Furthermore, all components of G 2

n,r [A∞ \ (A0 ∪ B)] have
Euclidean diameter O(

√
log n) in T 2

n .
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Connectivity

Penrose (1997) πr2conn(n) = log n
Obstruction to connectivity: isolated vertices
At the threshold, E(isolated vertices) = 1
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The isoperimetric argument for the Gilbert model in Tn

Suppose πr2 = log n.

Why are there no two large components in Gr (n)?

Two vertices x and y of Gr (n) are joined iff ||x − y || < r .

• Edges from different components of Gr (n) do not cross.
• Edges from different components of Gr (n) are separated by r/2.

Tessellate Tn with squares of side length r/
√

20.
Points in neighboring squares lie at distance at most r/2.

Color squares blue if they intersect an edge of a fixed large
component of Gr (n).
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The isoperimetric argument for the Gilbert model

Two large components in Gr are separated by a long boundary B.
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The isoperimetric argument for the Gilbert model

Two large components in Gr are separated by a long boundary B.

B yields a long empty external vertex boundary BT .

Amites Sarkar Bootstrap Percolation in Random Geometric Graphs



The isoperimetric argument for the Gilbert model

Suppose BT consists of K � 1 squares.

There are at most n(8e)K choices for BT .

Each square in BT is empty with probability n−C .

The expected number of such configurations is at most
n(8e)Kn−CK → 0 as n→∞, if K is sufficiently large.
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The Bradonjić-Saniee model when θ < 1+p
2

This time, the (frozen) boundary of a growing infection is not so
well-defined.

On the boundary, there will be a mixture of infected and
uninfected points.

Also, there need not be any vacant squares, just low-density
regions.
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A tale of two tilings

Fine tiling F : tiles of side length r/K ,K � 1
A fine tile T ∈ F is coloured white if either it contains fewer than
(1− η)p|T | initially infected points, or fewer than (1− η)|T |
points in total. Otherwise, we colour T red if all its points are
infected by the end of the bootstrap percolation process, and blue
if this is not the case.

Rough tiling R: tiles of side length Kr ,K � 1
A tile in R is colored white if one of its subtiles in F is coloured
white, red if all its subtiles in F are coloured red, and blue
otherwise. P(rough tile is white) = O(n−C ).
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The fine tiling F
If a large circular component of fine red tiles has no fine white tiles
in its vicinity

R + 2r

Red

Red/blue

R

R− 2r
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The fine tiling F
If a large circular component of fine red tiles has no fine white tiles
in its vicinity its radius expands by at least δr .

R + 2r

Red

Red/blue

R

R− 2r
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The rough tiling R
Suppose a rough tile T is red.

T
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The rough tiling R
Then either all its neighbors are red...

T
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The rough tiling R
or there is a white rough tile at graph distance at most 3 from T .

T
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The rough tiling R
Consequently, any large component of red rough tiles
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The rough tiling R
Consequently, any large component of red rough tiles must be
associated with a long cycle of white rough tiles in H8.
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The rough tiling R
Consequently, any large component of red rough tiles must be
associated with a long cycle of white rough tiles in H8. This has
probability o(n−1), and so is unlikely to occur anywhere in Tn.
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The threshold for full percolation θ = θislands(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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An obstruction to full percolation with diameter r

f →

g →

x

1

1

1

z

z

z

Condition for non-infectability: G (x , z) = 3z + px < 4θ

Probability of configuration: q = exp
{

a log n
4 F (x , z)

}
F (x , z) = 8(z − 1− z log z) + p(x − 1− x log x)

Amites Sarkar Bootstrap Percolation in Random Geometric Graphs



An obstruction to full percolation with diameter r

f →

g →

x

1

1

1

z

z

z

Maximize: F (x , z) = 8(z − 1− z log z) + p(x − 1− x log x)

subject to: G (x , z) = 3z + px = 4θ
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An obstruction to full percolation with diameter r

f →

g →

x

1

x3/8

x3/8

1

1

Solution: z = x3/8 (recall 3z + px = 4θ)

Threshold:

4 + a
{

8(x3/8 − 1− 3
8x

3/8 log x) + p(x − 1− x log x)
}

= 0
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The threshold for full percolation θ = θislands(p)

f →

g →

e−λ

1

e−λ

e−λ

e−λh

e−λh

1

1

τ ≤ 1/2

f →

g →

e−λ

1 1

e−λh e−λh

e−λh

1

1

1/2 ≤ τ ≤ 1

• Vary diameter D = 2τ r and let densities f , g vary continuously

• For fixed τ , optimize f , g

• Then optimize over τ
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The local growth threshold θ = θlocal(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation
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The local growth threshold θ = θlocal(p)

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

1 θ p

To break the logarithmic barrier, infections need to do more than
just start.

They need to be able to expand beyond each radius τ r .

This yields a Lagrange multiplier problem with infinitely many
conditions.
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The local growth threshold θ = θlocal(p)

Rlens(t) Rlune(t)

Bt(O)

Find functions f , g which maximize

q(f , g) :=

∫
x∈R2

p (f (‖x‖)− 1− f (‖x‖) log[f (‖x‖)]) + (1− p) (g(‖x‖)− 1− g(‖x‖) log[g(‖x‖)]) dx

subject to

I (f , g)(t) :=

∫
x∈Rlens(t)

(pf (‖x‖) + (1− p)g(‖x‖)) dx +

∫
x∈Rlune(t)

pf (‖x‖)dx > θ

for all t ≥ 0.
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What did we actually prove?

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

The local growth threshold is only a sufficient condition for local
growth, and the islands threshold is only a necessary condition for
full percolation.

Accordingly, these thresholds only provide a lower bound for local
growth and an upper bound for full percolation.
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The main open questions

θ

p

θ = θstart

θ = θlocal

θ = 1+p
2

No percolation

Almost no percolation

Almost percolation

θ = θislands

1

10

No percolation

Full percolation

Almost no percolation

Almost no percolation

No percolation

• Prove that the local growth threshold is also a necessary
condition for local growth, so that the solution to the above
optimization problem yields the correct threshold for local growth.

• Prove that the symmetric islands described above are in fact the
last obstacles to full percolation, so that the islands threshold is
the correct threshold for full percolation.
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It’s more complicated in one dimension

Polynomial growth

Polynomial obstructions

Logarithmic obstructions

No growth Logarithmic growth

Full percolation
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Thank you for your attention!
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