Schur's Theorem

Schur's theorem states the following:

Theorem 1. A finite coloring of \mathbb{N} contains x, y, z, all the same color, such that x + y = z.

Proof. Let $\chi : \mathbb{N} \to \{1, \ldots, r\}$ be an r-coloring of \mathbb{N} , and define N = N(r) by the equation

$$N(r) = R(3; r) - 1 := R(3, 3, \dots, 3) - 1,$$

where there are r 3s in the Ramsey number. We show that we can in fact find the required x, y, z among the integers $1, 2, \ldots, N$.

Let K_{N+1} be the complete graph on vertex set $\{1, 2, ..., N+1\}$. Define an edge-coloring χ' of K_{N+1} using the formula

$$\chi'(\{i, j\}) = \chi(|i - j|).$$

Since N + 1 = R(3; r), this K_{N+1} contains a monochromatic triangle, with vertices i, j, k, in which, without loss of generality, i > j > k. Setting x = i - j, y = j - k and z = i - k, we see that x, y and z all get the same color, and that x + y = (i - j) + (j - k) = i - k = z. \Box

Non-examinable historical digression. Schur packed a lot into his 4-page paper [7]. Besides an application to Fermat's Last Theorem (see [2]), he also proved remarkably good bounds on S(r), the smallest N such that an r-coloring of $\{1, 2, ..., N\}$ contains (not necessarily distinct) x, y, z with the same color and with x + y = z. The above argument (essentially due to Schur) shows that $S(r) \leq N(r) = R(3; r) - 1$. But Schur also [7] proved the bounds

$$\frac{1}{2}(3^r+1) \le S(r) \le N(r) \le F(r) := \lfloor er! \rfloor$$

(in which, yes, e = 2.71828...). The lower bound comes from a charming construction (try to find it). For the upper bound, it is not hard to show [4] that F(r) = rF(r-1) + 1 for $r \ge 2$. One can then use this (and induction) to prove that $N(r) \le F(r)$.

r	$\frac{1}{2}(3^r+1)$	S(r)	N(r)	F(r)
1	2	2	2	2
2	5	5	5	5
3	14	14	16	16
4	41	45	50 - 61	65
5	122	161	161 - 306	326

Table 1: Schur and Ramsey numbers

Schur didn't use graphs in his proof. Instead, he expressed the entire argument in its original number-theoretic context, and, of course, in German. For English expositions, see [4] for the graph-theoretic version, and [5] for the number-theoretic version. Remarkably, Schur's asymptotic bounds have hardly been improved in over 100 years [1]. And, for small values of r, his bounds are remarkably good, as the above table shows. The value S(5) was found only in 2017 after a massive computer search [3], while the bounds for N(4) and N(5) are from the recently-updated survey [6].

References

- Fox, J., Pach, J. and Suk, A., Bounded VC-dimension implies the Schur-Erdős conjecture, *Combinatorica* 41 (2021), 803–813.
- [2] Graham, R., Rothschild, B. and Spencer, J., Ramsey Theory, Second Edition, Wiley (1990).
- [3] Heule, M., Schur number five, arXiv:1711.08076 (2017).
- [4] Mirsky, L., The combinatorics of arbitrary partitions, Bulletin of the Institute of Mathematics and its Applications 11 (1975), 6–9.
- [5] Nešetřil, J. and Rosenfeld, M., I. Schur, C.E. Shannon and Ramsey numbers, a short story, *Discrete Mathematics* 229 (2001), 185–195.
- [6] Radziszowski, S., Small Ramsey numbers, *Electronic Journal of Combinatorics* 1 (1994), Paper 8 (updated June 2024).
- [7] Schur, I., Über die Kongruenz $x^m + y^m \equiv z^m \pmod{p}$, Jahresbericht der Deutschen Mathematikervereinigung **25** (1916), 114—117.