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Abstract

Given a set of integers A and an integer k, write A+k ·A for the set {a+kb : a ∈ A, b ∈ A}.
Hanson and Petridis [6] showed that if |A+A| ≤ K|A| then |A+2 ·A| ≤ K2.95|A| and also that
|A + 2 · A| ≤ (K|A|)4/3. We present a new construction, the Hypercube+Interval construction,
which lies close to these upper bounds and which shows in particular that, for all ϵ > 0, there
exist A and K with |A+A| ≤ K|A| but with |A+ 2 ·A| ≥ K2−ϵ|A|.

Further, we analyse a method of Ruzsa [15], and generalise it to give fractional analogues
of the sizes of sumsets, difference sets and dilates. We apply this method to a construction
of Hennecart, Robert and Yudin [3] to prove that, for all ϵ > 0, there exists a set A with
|A−A| ≥ |A|2−ϵ but with |A+A| < |A|1.7354+ϵ.

The second author would like to thank E. Papavassilopoulos for useful discussions about how
to improve the efficiency of his computer searches.

1 Introduction and Definitions

The study of the size of the sumset |A+A| and difference set |A−A| (sometimes denoted DA) in
terms of |A| is a central theme in additive combinatorics. For instance, Freiman’s theorem states
that if |A+A| ≤ K|A|, then A must be a large fraction of a generalized arithmetic progression, and
the Balog-Szemerédi-Gowers theorem states that if A has large additive energy, then A must contain
a large subset A′ such that |A′ + A′|/|A′| is small. For the precise definitions and statements, we
refer the reader to [16].

For a finite set A ⊂ Z, with |A| = n, we have that

|A+A| ≤ n(n+ 1)

2
and |A−A| ≤ n2 − n+ 1,

with equality in both cases precisely when A is a Sidon set, that is, a set containing no nontrivial
additive quadruple (a, b, c, d) ∈ A4 with a+b = c+d (and consequently no nontrivial (a, b, c, d) with
a− b = c− d). In other words, if |A+ A| is as large as it can possibly be, then so is |A− A|, and
conversely. In 1992, Ruzsa [15] showed, using an ingenious probabilistic construction, that |A+A|
can be small, while |A − A| can be almost as large as possible, and vice-versa. In particular, he
showed the following.

Theorem 1 (Ruzsa, 1992). For every large enough n, there is a set A such that |A| = n with

|A+A| ≤ n2−c and |A−A| ≥ n2 − n2−c,

where c is a positive absolute constant. Also, there is a set B with |B| = n,

|B −B| ≤ n2−c and |B +B| ≥ n2

2
− n2−c.
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A few years later, Hennecart, Robert and Yudin [3] constructed a set A of size n with |A+A| ∼
n1.4519 but |A − A| ∼ n1.8462. Their construction was inspired by convex geometry, specifically
the difference body inequality of Rogers and Shephard [13]. In the other direction, the study and
classification of MSTD sets (sets with more sums than differences) began with Conway in 1967,
and has now attracted a large literature (see [7] for a recent survey).

Note that Hennecart, Robert and Rudin in fact constructed a set A ⊂ Zd. But any such
construction in Zd can be easily translated to a construction in Z using an appropriately chosen
Freiman homomorphism, i.e., a map ϕ of the form

ϕ(x1, . . . , xd) = λ1x1 + · · ·+ λdxd,

for an appropriate choice of integers λi.
Another line of investigation was opened by Bukh [2] in 2008. Given a set of integers A and an

integer k, define the dilate set A+ k ·A by

A+ k ·A = {a1 + ka2 : a1, a2 ∈ A}.

For k = 1, this is just the sumset, A+A, and for k = −1 it is the difference set, A−A. Note that,
for example, the dilate set A + 2 · A is generally a strict subset of A + A + A, where each of the
three summands can be distinct.

Bukh proved many results on general sums of dilates λ1 ·A+ · · ·+ λk ·A (for arbitrary integers
λ1, . . . , λk), including lower and upper bounds on their sizes. Some of these results were phrased in
terms of sets with small doubling, namely, sets A ⊂ Z with |A+A| ≤ K|A|, for some fixed constant
K (known as the doubling constant). For such a set A, Plünnecke’s inequality [12] (see also [10])
shows that

|A+ 2 ·A| ≤ |A+A+A| ≤ K3|A|,

and Bukh asked if the exponent 3 could be improved. This question was answered affirmatively in
2021 by Hanson and Petridis [6], who proved the following.

Theorem 2 (Hanson-Petridis, 2021). If A ⊂ Z and |A+A| ≤ K|A|, then

|A+ 2 ·A| ≤ K2.95|A|.

They were also able to prove a result that improves Theorem 2 when K is large.

Theorem 3 (Hanson-Petridis, 2021). If A ⊂ Z and |A+A| ≤ K|A|, then

|A+ 2 ·A| ≤ (K|A|)4/3.

Our contributions in this paper are best understood in the context of feasible regions of the plane,
and so we make the following definition.

Definition. For fixed integers k and l, we define the feasible region Fk,l to be the closure of the
set Ek,l of attainable points

Ek,l =

{(
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)}
,

as A ranges over finite sets of integers.
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Note that for any k and l, we have that Ek,l ⊂ [1, 2]2, which follows from the fact that |A| ≤
|A+k ·A| ≤ |A|2 for all A. For every k and l, each A produces a point in Ek,l. With A fixed, we can
generate a sequence of sets, indexed by the dimension d, by taking a Cartesian product Ad ⊂ Zd,
and then we will have |Ad+k ·Ad| = |A+k ·A|d. The advantage of the logarithmic measure we are
using is that all examples in this sequence, generated from the same set A, correspond to the same
point (x, y) ∈ Ek,l. Another useful fact is that the set Fk,l is convex. We prove this in Section 2.

The first series of results in this paper concerns the size of the dilate set A+ 2 ·A. We present
a construction, the Hypercube+Interval construction, which improves all previous bounds, and is
close to the above upper bounds of Hanson and Petridis. Specifically, this construction shows that
the graph of the piecewise-linear function

y = min (2x− 1, (log3 4)x) =

{
2x− 1 1 ≤ x ≤ log 9

4
3 = 1.3548 . . .

(log3 4)x log 9
4
3 ≤ x ≤ 2

is entirely contained in F1,2. This will allow us to prove a partial converse to Theorem 2, namely
that for any ϵ > 0, there exists a positive constant K and a set A with |A + A| ≤ K|A| but
|A+2 ·A| ≥ K2−ϵ|A|. Thus the true bound here is between 2 and 2.95. We also give some negative
results, showing that neither Sidon Sets, nor subsets of {0, 1}d ⊂ Zd, can give rise to feasible points
outside the regions already proved feasible. Finally, we give a lower bound for the region F1,2,
which is an easy consequence of Plünnecke’s inequality. All these bounds and constructions are
illustrated in Figure 2.

Our next series of results concerns the relationship between the sizes of A+A and A−A, and
thus relates to the feasible region F1,−1. This is one of the oldest topics in additive combinatorics,
with results going back to Freiman and Pigarev [11] and Ruzsa [14] in the 1970s (and indeed Conway
in the 1960s).

Our starting point is a 1992 paper of Ruzsa [15]. Ruzsa constructed sets A ⊂ Zd for which
A − A is very large, but A + A is very small, in the following way. Start with a finite set S ⊂ Z
with |S + S| < |S − S|. Then, for a fixed probability 0 < q < 1, select a random subset A ⊂ Zd by
taking each element of Sd independently with probability qd. For an appropriate choice of q, this
“boosts” the discrepancy between |S+S| and |S−S| enough to prove the first part of Theorem 1.
The second part is proved in a similar way.

In Section 4, we analyse and generalise Ruzsa’s method from [15], leading to the following
concept, which can be seen as a continuous analogue of the size of a sumset and that of a dilate.

Definition. A fractional dilate γ is a map γ : Z → R+ ∪ {0} with finite support supp(γ). We
define the size of a fractional dilate to be

∥γ∥ = inf
0≤p≤1

∑
n∈supp(γ)

γ(n)p.

A fractional set is a fractional dilate α for which α(n) ≤ 1 for all n ∈ Z.

Note that, if α is a fractional set, then ∥α∥ =
∑

n∈Z α(n), i.e., the above infimum is attained at
p = 1. On the other hand, if γ is a dilate for which γ(n) ≥ 1 for all n ∈ Z, then ∥γ∥ = |supp(γ)|,
and the infimum is attained at p = 0. In general, we describe a fractional dilate as being opulent,
spartan or p-comfortable if the above infimum is attained at p = 0, p = 1 or 0 < p < 1 respectively.
Theorem 20 gives a useful alternative characterization of fractional dilates.

We can identify an actual subset S of Z with the fractional set 1S , which is both spartan and
opulent. For any such sets S and T , 1S + k · 1T will be opulent, so that

∥1S + k · 1T ∥ = |S + k · T |.
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Given a fractional set α, let us say that a random set Sn ⊆ Zn is drawn from αn if each element of
Zn is chosen independently, and the probability that (i1, i2, . . . , in) is selected is α(i1)α(i2) . . . α(in).
Moreover, for fractional sets α, β and an integer k, let α+ k · β denote the fractional dilate defined
by the formula

(α+ k · β)(n) =
∑
(i,j)

i+kj=n

α(i)β(j).

The point of these definitions is the following pair of theorems, which we prove in Section 4.3.

Theorem 4. Let α be a fractional set with ∥α∥ > 1, and suppose Sn ⊆ Zn is drawn from αn. Then

E|Sn| = ∥α∥n Var|Sn| ≤ ∥α∥n

and
lim
n→∞

(E|Sn + k · Sn|)1/n = ∥α+ k · α∥.

Theorem 5. Let α be a fractional set with ∥α∥ > 1, and suppose Sn ⊆ Zn is drawn from αn. If
α+ k · α is “strictly spartan” (see later for an explanation of this terminology), in the sense that∑

n∈supp(γ)

γ(n) log γ(n) < 0,

then, with probability tending to 1,

|Sn + k · Sn| ≥ 1
2 |Sn|2 if k ̸= 1

|Sn + k · Sn| ≥ 1
4 |Sn|2 if k = 1.

From now on, the phrase “with high probability”, abbreviated to whp, means “with probability
tending to 1 as the dimension (usually denoted by n) tends to infinity”.

In Section 4.4, we apply these theorems to a construction of Hennecart, Robert and Yudin [3],
to construct a fractional set α for which α− α is spartan, but α+ α is not.

Theorem 6. There exists a fractional set α for which ∥α∥ > 1, α − α is strictly spartan (so that
∥α− α∥ = ∥α∥2), and ∥α+ α∥ ≤ ∥α∥1.7354.

This will allow us to prove that (1.7354, 2) is feasible for F1,−1.

Corollary 7. For all ϵ > 0, there exists a finite subset A ⊆ Z such that |A− A| ≥ |A|2−ϵ > 1 but
|A+A| ≤ |A|1.7354+ϵ.

Proof. Let α be the fractional set with properties as in Theorem 6, and let Sn be drawn from αn.
First, from Theorem 4 and Chebyshev’s inequality

P(||Sn| − ∥α∥n| > 0.1∥α∥n) ≤ 100Var|Sn|/∥α∥2n ≤ 100/∥α∥n → 0,

so that with high probability
||Sn| − ∥α∥n| ≤ 0.1∥α∥n. (1)

Second, since α− α is strictly spartan, Theorem 5 shows that with high probability

|Sn − Sn| ≥ 1
2 |Sn|2. (2)
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Finally, Theorem 4 shows that

lim
n→∞

E|Sn + Sn|1/n → ∥α+ α∥ = ∥α∥1.7354.

Consequently, for all ϵ > 0, we will have

E|Sn + Sn| ≤ ∥α∥(1.7354+ϵ)n

for all sufficiently large n, and for such n

P(|Sn + Sn| > ∥α∥(1.7354+2ϵ)n) → 0

by Markov’s inequality. Invoking (1), we have that for sufficiently large n

P(|Sn + Sn| > |Sn|1.7354+3ϵ) → 0,

so that with high probability
|Sn + Sn| ≤ |Sn|1.7354+3ϵ. (3)

The conclusion of the corollary follows from (1), (2) and (3).

In the other direction, it follows from results of Freiman and Pigarev [11] and Ruzsa [14] that
(x, 2) is not attainable for any x < 3/2. All these results are illustrated in Figure 1.

Figure 1: The feasible region F1,−1

Finally, in Section 5, we discuss many open questions about F1,−1 and F1,2, and about feasible
regions in general.
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2 Feasible Regions

We remind the reader of the definition of a feasible region. For fixed integers k and l, the feasible
region Fk,l is defined as the closure of the set Ek,l of attainable points

Ek,l =

{(
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)}
⊂ [1, 2]2,

as A ranges over finite sets of integers. Note once again that the inclusion follows from the fact
that |A| ≤ |A + k · A| ≤ |A|2 for all such A. Since Ek,l ⊂ [1, 2]2, we have also Fk,l ⊂ [1, 2]2. As
mentioned in the introduction, we now prove that Fk,l is convex.

Theorem 8. For all nonzero k, l, the feasible region Fk,l is convex, and contains the diagonal
D = {(x, x) : 1 ≤ x ≤ 2}.

Proof. First we prove the convexity. To do this, we first consider points (x, y), (x′, y′) ∈ Ek,l, and
take t ∈ [0, 1]. We will show that (tx + (1 − t)x′, ty + (1 − t)y′) ∈ Fk,l. Since (x, y) ∈ Ek,l, there
exists a set A ⊂ Z with

|A+ k ·A| = |A|x and |A+ l ·A| = |A|y.

Likewise, since (x′, y′) ∈ Ek,l, there exists a set B ⊂ Z with

|B + k ·B| = |B|x′
and |B + l ·B| = |B|y′ .

Setting β = log |B|/ log |A|, choose a sequence q1, q2, . . . of rational numbers such that

lim
i→∞

qi =
tβ

1− t+ tβ
.

For each such qi = r/s, we consider a set Ai ⊂ Zs, defined as

Ai = A×A× · · · ×A︸ ︷︷ ︸
r

×B ×B × · · · ×B︸ ︷︷ ︸
s−r

,

in which there are r factors of A and s− r factors of B. We have

|Ai| = |A|r|B|s−r,

|Ai + k ·Ai| = |A|rx|B|(s−r)x′
, and

|Ai + l ·Ai| = |A|ry|B|(s−r)y′ .

Therefore,

log |Ai + k ·Ai|
log |Ai|

=
rx log |A|+ (s− r)x′ log |B|
r log |A|+ (s− r) log |B|

=
qix+ (1− qi)x

′β

qi + (1− qi)β
,

which tends to tx+ (1− t)x′ as i → ∞. Similarly,

log |Ai + l ·Ai|
log |Ai|

→ ty + (1− t)y′,

as i → ∞. Consequently, (tx+ (1− t)x′, ty + (1− t)y′) ∈ Fk,l.
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Now, given points (x, y), (x′, y′) ∈ Fk,l, we may take sequences of points (xj , yj) and (x′j , y
′
j)

from Ek,l tending to (x, y) and (x′, y′) respectively. For each j, the above argument shows that

(txj + (1− t)x′j , tyj + (1− t)y′j) ∈ Fk,l.

Consequently, letting j → ∞, we have that

(tx+ (1− t)x′, ty + (1− t)y′) ∈ Fk,l,

and the convexity is proved.
To show that (1, 1) ∈ Fk,l, we consider the set A := AN = {1, 2, . . . , N} for N ≫ max(k, l). We

have
|A+ k ·A| = (k + 1)(N − 1) + 1 and |A+ l ·A| = (l + 1)(N − 1) + 1,

so that, as N → ∞, (
log |A+ k ·A|

log |A|
,
log |A+ l ·A|

log |A|

)
→ (1, 1).

To show that (2, 2) ∈ Fk,l, let b > max(|k|, |l|) + 1, and consider the set B = {1, b, b2, . . . , bN}. We
have

|B + k ·B| ≥ 1
2 |B|2 and |B + l ·B| ≥ 1

2 |B|2,

so that, as N → ∞, (
log |B + k ·B|

log |B|
,
log |B + l ·B|

log |B|

)
→ (2, 2).

It now follows by convexity that D = {(x, x) : 1 ≤ x ≤ 2} ⊂ Fk,l.

This result easily generalises to higher dimensions.

3 A construction for F1,2

In this section, we present various results about the feasible region F1,2. In particular, as stated in
the introduction, we give a partial converse to a result of Hanson and Petridis (Theorem 2).

Our construction, the Hypercube + Interval construction, is very simple. Let

Hn =

{
n−1∑
i=0

ai4
i : ai ∈ {0, 1}

}
, Ik =

{
0, 1, . . . ,

4(4k−1 − 1)

3

}
and An,k = Hn ∪ Ik.

In other words, Hn denotes the set of all natural numbers whose base 4 representation has length
at most n and contains only 0s and 1s (the hypercube), and Ik is just an interval. We begin by
giving bounds on the sizes of various sumsets and dilates related to Hn and Ik.

Theorem 9. For n ≥ k > n+1
2 , and with notation as above, we have:

|Ik| =
4k − 1

3
≥ |Hn| = 2n

|Hn +Hn| = 3n

|Hn + Ik| = 2n−k+1 4
k − 1

3
≥ |Ik + Ik|

|Hn + 2 ·Hn| = 4n ≥ max{|Hn + 2 · Ik|, |Ik + 2 ·Hn|, |Ik + 2 · Ik|}.
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Proof. The first assertion is trivial. For Hn +Hn, note that

Hn +Hn =

{
n−1∑
i=0

ai4
i : ai ∈ {0, 1, 2}

}
.

In other words, Hn +Hn consists of the natural numbers whose base 4 representation has length
at most n and contains only 0s, 1s, and 2s. Thus |Hn +Hn| = 3n. Similarly, Hn + 2 ·Hn consists
of those natural numbers whose base 4 representation has length at most n and contains only 0s,
1s, 2s and 3s, but this is just {0, 1, . . . , 4n − 1}. Further, since maxHn ≥ max Ik, all of the sets
Hn + 2 · Ik, Ik + 2 ·Hn and Ik + 2 · Ik are subsets of {0, 1, . . . , 4n − 1}, and are therefore of size at
most 4n.

It remains to bound |Hn + Ik|. To this end, note that

Hn = {0, 1}+ {0, 4}+ {0, 42}+ · · ·+ {0, 4n−1}.

Also, if p ≥ q are positive integers, then

{0, 1, . . . , p− 1}+ {0, q} = {0, 1, . . . , p+ q − 1}.

Consequently,

Hn + Ik = Ik + {0, 1}+ {0, 4}+ · · ·+ {0, 4k−1}+ {0, 4k}+ · · ·+ {0, 4n−1}

=

{
0, 1, . . . ,

4(4k−1 − 1)

3

}
+ {0, 1}+ {0, 4}+ · · ·+ {0, 4k−1}+ {0, 4k}+ · · ·+ {0, 4n−1}

=

{
0, 1, . . . ,

4(4k−1 − 1)

3
+ 1

}
+ {0, 4}+ · · ·+ {0, 4k−1}+ {0, 4k}+ · · ·+ {0, 4n−1}

...

=

{
0, 1, . . . ,

2(4k − 1)

3
− 1

}
+ {0, 4k}+ · · ·+ {0, 4n−1} ⊇ Ik + Ik.

Moreover, the set {0, 4k} + · · · + {0, 4n−1} consists of multiples of 4k, which are all further than

2
(
4k−1
3

)
apart. It follows that Hn + Ik consists of 2n−k intervals of length 2

(
4k−1
3

)
.

Recall that An,k = Hn ∪ Ik. Using Theorem 9, we can show the following.

Corollary 10. Fix α ∈
(
1
2 , 1
)
, and set k = ⌊αn⌋. Then, as n → ∞,

log |An,k|
n

→ α log 4

log |An,k +An,k|
n

→ max

{
log 3,

1 + α

2
log 4

}
log |An,k + 2 ·An,k|

n
→ log 4.

Proof. For the first part, Theorem 9 gives

lim
n→∞

log |Hn|
n

= log 2 < lim
n→∞

log |Ik|
n

= α log 4.
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Since Ik ⊆ An,k and |An,k| ≤ |Hn| + |Ik|, it follows that limn→∞ log |An,k|/n = α log 4. In other
words, for the given range of parameters, the interval Ik makes the dominant contribution to the
size of An,k.

For the sumsets, we note that (again using Theorem 9)

lim
n→∞

log |Hn +Hn|
n

= log 3

and

lim
n→∞

log |Hn + Ik|
n

=
1 + α

2
log 4 > lim

n→∞

log |Ik + Ik|
n

.

Since Hn +Hn and Hn + Ik are both subsets of An,k +An,k, and

|An,k +An,k| ≤ |Hn +Hn|+ |Hn + Ik|+ |Ik + Ik|

it follows that

lim
n→∞

log |An,k +An,k|
n

= max

{
log 3,

1 + α

2
log 4

}
.

In other words, the dominant contribution to the size of An,k + An,k comes from Hn + Hn if
α < log 3/ log 2− 1 ≈ 0.585, and from Hn + Ik otherwise.

Finally, for the dilates, we have

lim
n→∞

log |An,k + 2 ·An,k|
n

= lim
n→∞

log |Hn + 2 ·Hn|
n

= log 4.

We can now use Corollary 10 to expand the known feasible region F1,2. Define f : [1, 2] → [1, 2] by

f(x) =

{
1
2(β + 1) if 1 ≤ x ≤ log 2

log(3/2)

(log4 3)x if log 2
log(3/2) ≤ x ≤ 2.

Corollary 11. For all 1 < β < 2, (f(β), β) ∈ F1,2.

Proof. Let α = 1/β, and set k = ⌊αn⌋. Then

α log 4f(β) = α log 4max

{
1

2
(β + 1), (log4 3)β

}
= α log 4max

{
1 + α

2α
,
log 3

α log 4

}
= max

{
1 + α

2
log 4, log 3

}
.

Thus Corollary 10 provides sets An,k with

log |An,k|
n

→ α log 4

log |An,k +An,k|
n

→ αf(β) log 4

log |An,k + 2 ·An,k|
n

→ αβ log 4,

proving the result.
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A simple change of variable shows that the graph of the piecewise-linear function

y = min (2x− 1, (log3 4)x) =

{
2x− 1 1 ≤ x ≤ log 9

4
3 = 1.3548 . . .

(log3 4)x log 9
4
3 ≤ x ≤ 2

is entirely contained in F1,2.
As mentioned above, this gives a partial converse to Theorem 2.

Corollary 12. For all ϵ > 0, there exist sets S and numbers K > 1 with |S + S| ≤ K|S| but with
|S + 2 · S| > K2−ϵ|S|.

Proof. Take α > log 3/ log 2− 1 in Corollary 10.

Let us quickly discuss a lower bound on the feasible region.

Theorem 13. For all sets A, |A||A+A| ≤ |A+ 2 ·A|2.

Proof. Corollary 7.3.6 of [16], which is an easy conseqeunce of Plünnecke’s inequality, states that
for any three sets A,B,C,

|A||B + C| ≤ |A+B||A+ C|.

Setting B = C = 2 ·A gives

|A||A+A| = |A||2 ·A+ 2 ·A| ≤ |A+ 2 ·A|2.

These results are all illustrated in Figure 2. First, the two results of Hanson and Petrridis
(Theorems 2 and 3) show that the regions y > 2.95x− 1.95 and y > 4x/3 are both infeasible (i.e.,
none of the points in those regions is attainable). Likewise, Theorem 13 shows that the region
y < 1 + x/2 is also infeasible. In the other direction, Corollary 11 shows that the lines OD and
DC are feasible, while Theorem 8 shows that the line OE is feasible. Consequently, the entire
quadrilateral ODCE is feasible.

These results leave three regions unexplored: triangles OAB,BCD and OEF . More precisely,
we can ask three questions:

Question 14. Is (the interior of) triangle OAB infeasible? In other words, does |A+A| = |A|1+t

imply |A+2 ·A| ≤ |A|1+2t? Alternatively, is it true that, for all A, |A||A+2 ·A| ≤ |A+A||A+A|?

Question 15. Are there no attainable points above the extension of line CD? In other words, is
it true that, if |A+A| = 3t, then |A+ 2 ·A| ≤ 4t?

Question 16. Is (the interior of) triangle OEF infeasible? In other words, is it true that, for all
A, |A+ 2 ·A| ≥ |A+A|?

We coin the term MST2D sets (or more sums than 2-dilates sets) for counterexamples to Ques-
tion 16. A natural candidate for an MST2D set is a Sidon set (that is, a set for which |A + A| is
as large as possible). However, one can easily show that a Sidon set cannot be an MST2D set.

Lemma 17. If A is a Sidon set with at least two elements, then |A+ 2 ·A| > |A+A|.

10



Figure 2: The feasible region F1,2

Proof. Adding and multiplying non-zero constants to A does not change |A + A| or |A + 2 · A|.
Thus we can assume that 0 ∈ A and gcd(A) = 1.

Let n = |A|. If X1, X2 are independent and identically distributed (IID) random variables,
drawn from any distribution on a finite set S, then P(X1 = X2) ≥ 1/|S|. Thus if A1, A2, A3, A4 are
IID drawn from the uniform (or indeed any) distribution on A, then

|A+ 2 ·A| ≥ P(A1 + 2 ·A2 = A3 + 2 ·A4)
−1.

Now, since A is a Sidon set,

P(A4 −A2 = k) = P(A1 −A3 = k) =


1/n, if k = 0

0, if k /∈ A−A

1/n2, otherwise.

Thus

P(A1 + 2 ·A2 = A3 + 2 ·A4) = P(A1 −A3 = 2(A4 −A2)) =
1

n2
+

K

n4
,

where K is the number of non-zero elements of A − A which are double some other element of
A−A. Now there are n2 − n non-zero elements of A−A, but A contains elements of both parities
(since 0 ∈ A and gcd(A) = 1). Therefore, A − A contains at least 2(n − 1) odd elements, so

11



K ≤ n2 − 3n+ 2. Consequently,

|A+ 2 ·A| ≥
(

1

n2
+

n2 − 3n+ 2

n4

)−1

=
n2

2

(
1− 3

2n
+

1

n2

)−1

≥ n2

2

(
1 +

3

2n
− 1

n2

)
=

n2

2
+

3n

4
− 1

2
≥ n2 + n

2
= |A+A|.

Similarly, a natural candidate for a counterexample to Question 15 is a “2-Sidon” set (i.e., one
where |A + 2 · A| is as large as possible). An easy way to construct such sets is as subsets of the
hypercube {0, 1}n. But it follows from Theorem 2.3 of [5] that such sets in fact satisfy the condition
of Question 15.

Lemma 18. [Green [5]] Suppose A and B are subsets of the hypercube {0, 1}n. Then

|A+ 2 ·B| = |A||B| ≤ |A+B|p,

where p = log 4/ log 3.

This lemma has an interesting history, going back to the 1970s. Details are in Appendix B of [5].
Very recently, Becker, Ivanisvili, Krachun and Madrid [1] proved that subsets of {0, 1}n also

satisfy the conditions of Question 14; however, since in their result |A+2 ·A| = |A|2, their Corollary
2 is also a corollary of Lemma 18 above.

Lemma 19 (Becker et al. [1], Corollary 2). Suppose A is a subset of the hypercube {0, 1}n. Then

|A+ 2 ·A|
|A|

≤
(
|A+A|
|A|

)q

,

where q = log 2/ log(3/2).

4 Fractional Dilates

4.1 General results on norms

We remind the reader of the following definitions. A fractional dilate γ is a map γ : Z → R+ ∪ {0}
with finite support supp(γ). We define the size of a fractional dilate to be

∥γ∥ = inf
0≤p≤1

∑
n∈supp(γ)

γ(n)p.

A fractional set is a fractional dilate α for which α(n) ≤ 1 for all n ∈ Z. Finally, we describe
a fractional dilate as being opulent, spartan or p-comfortable if the above infimum is attained at
p = 0, p = 1 or 0 < p < 1 respectively, so that, for instance, all fractional sets are spartan.

First, we give a simple characterisation of fractional dilates, which enables us to easily decide
whether a fractional dilate is opulent, spartan or p-comfortable.

12



Theorem 20. A fractional dilate γ with support S = supp(γ) is
spartan, if

∑
n∈S γ(n) log γ(n) ≤ 0

opulent, if
∑

n∈S log γ(n) ≥ 0

p-comfortable, if
∑

n∈S γ(n)p log γ(n) = 0.

Proof. For a fixed γ with support S, define a function f : [0, 1] → R by

f(p) =
∑
n∈S

γ(n)p,

so that ∥γ∥ = inf0≤p≤1 f(p). f is twice-differentiable, and also strictly convex, since

f ′′(p) =
∑
n∈S

(log γ(n))2γ(n)p > 0.

Suppose first that

f ′(1) =
∑
n∈S

γ(n) log γ(n) ≤ 0.

Then we must have f ′(p) ≤ 0 for all 0 < p < 1, and hence ∥γ∥ = f(1), i.e., γ is spartan.

Suppose next that

f ′(0) =
∑
n∈S

log γ(n) ≥ 0.

Then we must have f ′(p) ≥ 0 for all 0 < p < 1, and hence ∥γ∥ = f(0), i.e., γ is opulent.

Otherwise, f ′(0) < 0 < f ′(1), and hence there is a unique p ∈ (0, 1) for which

f ′(p) =
∑
n∈S

γ(n)p log γ(n) = 0.

It follows that ∥γ∥ = f(p), i.e., γ is p-comfortable.

Next we give yet another characterisation of ∥γ∥. Recall that, for positive numbers y1, . . . , yn
summing to 1, the entropy function H(y1, . . . , yn) is defined to be

H(y1, . . . , yn) = −
n∑

i=1

yi log2 yi.

Gibbs’ inequality (see for instance [4]) states that

H(y1, . . . , yn) ≤ −
∑

yi log2 zi

for any sequence of positive zi summing to 1, with equality if and only if yi = zi for all i.

Lemma 21. Suppose γ is a fractional dilate with support S = {s1, . . . , sn}. Then

∥γ∥ = max
y1+···+yn=1

2H(y1,...,yn)min

{
1,

n∏
i=1

γ(si)
yi

}
.

Proof. First we observe that, for real x and 0 ≤ p ≤ 1, we have min {0, x} ≤ px, with equality
exactly when either

13



1. p = 0 and x ≥ 0,

2. p = 1 and x ≤ 0, or

3. 0 < p < 1 and x = 0.

Next, fix 0 ≤ p ≤ 1, and let

zi =
γ(si)

p∑
i γ(si)

p
.

Clearly
∑

zi = 1. Then, for all positive yi summing to 1, we have

H(y1, . . . , yn) + min

{
0,
∑
i

yi log2 γ(si)

}
≤ H(y1, . . . , yn) +

∑
i

pyi log2 γ(si)

= H(y1, . . . , yn) +
∑
i

yi log2 γ(si)
p

= H(y1, . . . , yn) +
∑
i

yi

(
log2 zi + log2

∑
i

γ(si)
p

)
= H(y1, . . . , yn) +

∑
i

yi log2 zi + log2
∑
i

γ(si)
p

≤ log2
∑
i

γ(si)
p,

with the last inequality being Gibbs’ inequality.
Raising 2 to both sides shows that, for all positive y1, . . . , yn summing to 1, and all 0 ≤ p ≤ 1,

2H(y1,...,yn)min

{
1,
∏
i

γ(si)
yi

}
≤
∑
i

γ(si)
p. (1)

To prove the theorem, we only need show that we can choose the yi and p to achieve equality in (1).
For this, revisiting the derivation of (1), we require that yi = zi for all i and also that

min

{
0,
∑
i

yi log2 γ(si)

}
=
∑
i

pyi log2 γ(si).

From the definition of zi, this means we require exactly that

p
∑
i

γ(si)
p log γ(si) = min

{
0,
∑
i

γ(si)
p log γ(si)

}
.

As discussed at the start of this proof, this holds exactly when

1. p = 0 and
∑

i log γ(si) ≥ 0, i.e., when γ is opulent,

2. p = 1 and
∑

i γ(si) log γ(si) ≤ 0, i.e., when γ is spartan, or

3. 0 < p < 1 and
∑

i γ(si)
p log γ(si) = 0, i.e., when γ is p-comfortable;

here, we have also used Theorem 20. Consequently, we can indeed achieve equality in (1), so the
theorem is proved.
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4.2 Results for two sets

We recall some more definitions from the introduction. Given a fractional set α, we say that a
random set Sn ⊆ Zn is drawn from αn if each element of Zn is chosen independently, and the
probability that (i1, i2, . . . , in) is selected is α(i1)α(i2) . . . α(in). Moreover, for fractional sets α, β
and an integer k, let α+ k · β denote the fractional dilate defined by the formula

(α+ k · β)(n) =
∑
(i,j)

i+kj=n

α(i)β(j).

First we prove two simple lemmas that we will use repeatedly. In the proof of both we use the fact
that fractional sets are spartan.

Lemma 22. Suppose α and β are fractional sets, and γ = α+ β is spartan. Then

∥γ∥ = ∥α∥∥β∥.

Proof. If γ is spartan with support S, then

∥γ∥ =
∑
n∈S

γ(n) =
∑
n∈S

∑
(i,j)

i+j=n

α(i)β(j) =
∑
i∈Z

α(i)
∑
j∈Z

β(j) = ∥α∥∥β∥.

Lemma 23. Let α be a fractional set, and suppose that Sn ⊆ Zn is drawn from αn. Then

E|Sn| = ∥α∥n.

Proof. Writing v = (v1, . . . , vn) ∈ Zn, we have

E|Sn| =
∑
v∈Zn

P(v ∈ Sn) =
∑
v∈Zn

α(v1) · · ·α(vn) =
n∏

i=1

∑
vi∈Z

α(vi) = ∥α∥n.

Our aim is to prove Theorems 4 and 5, which concern just one fractional set α and a single
random set Sn ⊆ Zn drawn from αn. However, it is easier to start with two fractional sets α and
β, and let Sn, Tn ⊆ Zn be drawn independently from αn and βn respectively. In this section, we
consider two such sets, and prove the following “two-set” versions of Theorems 4 and 5.

Theorem 24. Let α and β be fractional sets, and suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively. Then
lim
n→∞

(E|Sn + k · Tn|)1/n = ∥α+ k · β∥.

Theorem 25. Let α and β be fractional sets, and suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively. If γ = α+ k · β is strictly spartan, in the sense that∑
n∈supp(γ)

γ(n) log γ(n) < 0,

then with high probability
|Sn + k · Tn| ≥ 1

2 |Sn||Tn|.
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Let us first prove the upper bound in Theorem 24. For this, we require a definition. For two
sets A,B ⊆ Zn, the multiplicity MultA+k·B(x) of x in A+ k ·B is defined by the formula

MultA+k·B(x) = |A ∩ (x− k ·B)| = |{(a, b) : a ∈ A, b ∈ B, a+ kb = x}|.

In other words, MultA+k·B(x) is the number of ways of writing x = a+ kb with a ∈ A and b ∈ B.
By replacing k · β by β in Theorem 24, it is enough to prove the theorem for k = 1. In the rest

of this subsection, we will make this simplification.

Theorem 26. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Then

E|Sn + Tn| ≤ ∥γ∥n.

Proof. Let X be the support of γ. Then the possible elements of Sn + Tn are the elements of Xn.
Given a particular element x ∈ Xn, we have, for all 0 ≤ p ≤ 1,

P(x ∈ Sn + Tn) = P(MultSn+Tn(x) > 0)

≤ min{1,E(MultSn+Tn(x))}
≤ (E(MultSn+Tn(x)))

p.

Now for x = (x1, . . . , xn) ∈ Xn, we have

E(MultSn+Tn(x)) =
∑

z1+y1=x1

...
zn+yn=xn

α(z1) · · ·α(zn)β(y1) · · ·β(yn)

=

( ∑
z1+y1=x1

α(z1)β(y1)

)
· · ·

( ∑
zn+yn=xn

α(zn)β(yn)

)
= γ(x1)γ(x2) · · · γ(xn).

It follows that

E|Sn + Tn| =
∑
x∈Xn

P(x ∈ Sn + Tn)

≤
∑
x∈Xn

(E(MultSn+Tn(x)))
p

=
∑

(x1,...,xn)∈Xn

γ(x1)
pγ(x2)

p · · · γ(xn)p

=

(∑
x∈X

γ(x)p

)n

for all 0 ≤ p ≤ 1. Since ∥γ∥ = inf0≤p≤1
∑

x γ(x)
p, the result follows.

Next we prove that ∥γ∥ is a lower bound for the limit. We will require a series of lemmas.

Lemma 27. Suppose that X =
∑N

i=1 Zi, where the Zi are independent Bernoulli random variables.
Then

P(X > 0) ≥ E(X)− 1
2E(X)2.
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Proof. We have

E(X)2 =

N∑
i=1

N∑
j=1

E(Zi)E(Zj) =

N∑
i=1

N∑
j=1

E(ZiZj) ≥ 2
∑
i<j

E(ZiZj) = 2E
(
X

2

)
,

so that, since n−
(
n
2

)
≤ 1n>0 for all n ≥ 0,

E(X)− 1
2E(X)2 ≤ E

(
X −

(
X

2

))
≤ E(1X>0) = P(X > 0).

Lemma 28. Suppose that (Xn)
∞
n=1 is a collection of random variables, each of which can be written

as the sum of a finite number of independent Bernoulli random variables. If

lim
n→∞

E(Xn)
1/n = t

then
lim
n→∞

P(Xn > 0)1/n = min(1, t).

Proof. Suppose first that t < 1. Lemma 27 implies that

lim sup
n→∞

(E(Xn)− P(Xn > 0))1/n ≤ lim
n→∞

(
1
2E(Xn)

2
)1/n

= t2.

Consequently, for all ϵ > 0, if n ≥ n0(ϵ), we have both

(t− ϵ)n ≤ E(Xn) ≤ (t+ ϵ)n

and
E(Xn)− P(Xn > 0) ≤ (t2 + ϵ)n

so that also
(t− 2ϵ)n ≤ P(Xn > 0) ≤ (t+ ϵ)n

which proves that P(Xn > 0)1/n → t.
Next suppose that t ≥ 1. Given any 0 < u < 1, write Yn = XnWn, where the Wi are new

independent Bernoulli random variables with P(Wn = 1) = (u/t)n. Then

lim
n→∞

E(Yn)1/n = lim
n→∞

(E(Xn)E(Wn))
1/n = u,

and so by the above argument

u = lim
n→∞

P(Yn > 0)1/n ≤ lim inf
n→∞

P(Xn > 0)1/n ≤ 1.

Since this is true for all u < 1, we must have P(Xn > 0)1/n → 1.

We can use Lemma 28 to calculate the asymptotic behaviour of the probability that a randomly
chosen vector lies in Sn + Tn.
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Corollary 29. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Fix N > 0, and suppose that

• x1, . . . , xN ∈ Z
• y1, . . . , yN ≥ 0 with

∑
yi = 1

• for each n, z1,n, . . . , zN,n ∈ Z≥0 with
∑

i zi,n = n and zi,n/n → yi for each i

• for each n, vn ∈ Zn is such that zi,n coordinates of vn are equal to xi.

Then, if
t = γ(x1)

y1 . . . γ(xN )yN

we have
lim
n→∞

P(vn ∈ Sn + Tn)
1/n = min {1, t} .

Proof. For a fixed sequence vn, let

Xn = MultSn+Tn(vn) =
∑
z∈Zn

1z∈Sn,vn−z∈Tn ,

so that each Xn is a sum of a finite number of independent Bernoulli random variables. As in the
proof of Theorem 26,

E(Xn) = γ(x1)
z1,nγ(x2)

z2,n . . . γ(xN )zN,n ,

so E(Xn)
1/n → t. Applying Lemma 28, we get that

P(vn ∈ Sn + Tn)
1/n = P(Xn > 0) → min {1, t} .

The next corollary proves the lower bound on (E|Sn + Tn|)1/n which, together with Theorem 26,
completes the proof of Theorem 24.

Corollary 30. Let α and β be fractional sets, suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Then

lim inf
n→∞

(E|Sn + Tn|)1/n ≥ ∥γ∥.

Proof. Since α and β have finite support, so does γ. Let S = supp(γ) = {s1, . . . , sN}. By Lemma 21,
there exist non-negative numbers y1, . . . , yN summing to 1 with

∥γ∥ = 2H(y1,...,yN )min

{
1,

N∏
i=1

γ(si)
yi

}
.

For each n, choose integers z1,n . . . , zN,n summing to n, and with zi/n → yi for each 1 ≤ i ≤ N .
Let Vn ∈ Zn be the set of vectors with exactly zi,n coordinates equal to si, for each 1 ≤ i ≤ N .
Then, for each v ∈ Vn, Corollary 29 shows that

lim
n→∞

P(v ∈ Sn + Tn)
1/n = min

{
1,

N∏
i=1

γ(si)
yi

}
.

It is well known that, abbreviating zi,n to zi,

lim
n→∞

|Vn|1/n = lim
n→∞

(
n

z1, z2, . . . , zN

)1/n

= 2H(y1,...,yN ).
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Consequently,

lim inf
n→∞

(E|Sn + Tn|)1/n ≥ lim inf
n→∞

(E|(Sn + Tn) ∩ Vn|)1/n

= lim inf
n→∞

(|Vn| · P(v ∈ Sn + Tn|v ∈ Vn))
1/n

= lim
n→∞

|Vn|1/n · lim
n→∞

P(v ∈ Sn + Tn|v ∈ Vn)
1/n

= 2H(y1,y2,...,yN )min

{
1,

N∏
i=1

γ(si)
yi

}
= ∥γ∥.

With Theorem 24 proved, we turn to Theorem 25.

Lemma 31. Let α and β be fractional sets, and suppose Sn, Tn ⊆ Zn are drawn from αn and βn

respectively, and let γ = α+ β. Suppose that γ is strictly spartan, in the sense that∑
n∈supp(γ)

γ(n) log γ(n) < 0.

Then
E(|Sn||Tn|) = E|Sn| · E|Tn| = ∥α∥n∥β∥n = ∥γ∥n

and
E(|Sn||Tn| − |Sn + Tn|) = o(∥γ∥n).

Proof. The first part of the conclusion follows from Lemmas 22 and 23. For the second part, for
v = (v1, . . . , vn) ∈ Zn, write

Xv = E(MultSn+Tn(v)).

Since Xv is a sum of independent Bernoulli random variables, Lemma 27 shows that

E(Xv)− P(Xv > 0) ≤ E(Xv)
2.

Since the left hand side is also at most E(Xv), it follows that

E(Xv)− P(Xv > 0) ≤ E(Xv)
p for all 1 ≤ p ≤ 2.

Therefore, for all 1 ≤ p ≤ 2,

E(|Sn||Tn| − |Sn + Tn|) =
∑
v

(E(Xv)− P(Xv > 0)) ≤
∑
v

E(Xv)
p

=
∑

v1,v2,...,vn

γ(v1)
p . . . γ(vn)

p =

(∑
v

γ(v)p

)n

.

Now γ is strictly spartan, so the function f(p) =
∑

v γ(v)
p is strictly decreasing on the interval

[0, 1 + ϵ], for some ϵ > 0. Consequently, for that ϵ, we have
∑

v γ(v)
1+ϵ < ∥γ∥. Thus E(|Sn||Tn| −

|Sn + Tn|) = o(∥γ∥n) as n → ∞.

Theorem 25 follows from Lemma 31 and Markov’s inequality.
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4.3 From two sets to one: the rainbow connection

In this section we will prove Theorems 4 and 5. Let α be a fractional set, let k be a nonzero integer,
and let γ := α+ k · α denote the fractional dilate defined by γ(n) =

∑
i+kj=n α(i)α(j).

First we prove two easy lemmas.

Lemma 32. Let α be a fractional set, and suppose that Sn ⊆ Zn is drawn from αn. Then

Var|Sn| ≤ ∥α∥n.

Proof. |Sn| is the sum of independent Bernoulli random variables Xi with P(Xi = 1) =: pi. We
have

Var|Sn| =
∑
i∈S

VarXi =
∑
i∈S

pi(1− pi) ≤
∑
i∈S

pi = E|Sn| = ∥α∥n,

where the last equality is Lemma 23.

Lemma 33. Let α be a fractional set with ∥α∥ > 1, and let γ := α + k · α for a fixed nonzero
integer k. Then ∥α∥ ≤ ∥γ∥.

Proof. Let Sn be drawn from αn. Then |Sn| can be written as the sum of independent Bernoulli
random variables, and so (E|Sn|)1/n = ∥α∥ > 1 for all n by Lemma 23. Thus, by Lemma 28, we
have

lim
n→∞

Pr(|Sn| > 0)1/n = 1.

Now let Tn be drawn independently from αn. By Corollary 30, we have

∥γ∥ = lim
n→∞

(E|Sn + k · Tn|)1/n.

But |Sn + k · Tn| ≥ |Tn| whenever Sn is non-empty, so

|Sn + k · Tn| ≥ |Tn| · 1|Sn|>0.

Since |Sn| and |Tn| are independent, it follows that

∥γ∥ = lim
n→∞

(E|Sn + k · Tn|)1/n ≥ lim
n→∞

(E|Tn| · P(|Sn| > 0))1/n = ∥α∥.

We will prove Theorem 4 by comparing the sizes of Sn + k · Sn and Sn + k · Tn, where Sn and
Tn are drawn independently from αn. For α and γ fixed, with supports A and Γ respectively, we
say that a vector v ∈ Zn is rainbow if its components include at least one copy of each element of
Γ. Finally, let Rn denote the set of rainbow vectors in Zn.

The cases k ̸= 1 and k = 1 require separate analyses. We treat the case k ̸= 1 first.

Theorem 34. Fix a fractional set α with ∥α∥ > 1 and a positive integer n, and let Sn and Tn be
drawn independently from αn. If k ̸= 1, and v is a rainbow vector for γ = α+ k · α, then

P(v ∈ Sn + k · Sn) = P(v ∈ Sn + k · Tn)

and so
E|(Sn + k · Sn) ∩Rn| = E|(Sn + k · Tn) ∩Rn|.
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Proof. Recall that A = supp(α). For a fixed rainbow vector v ∈ Zn, write

S = {x ∈ Zn : x ∈ An, v − kx ∈ An} = {x ∈ Zn : P(x ∈ Sn, v − kx ∈ Sn) > 0}.

Since A is finite, so is S.
We claim that there exist distinct a, b ∈ A such that the expression a+ kb is unique, i.e., a+ kb

cannot be expressed in any other way a′+kb′, where a′, b′ ∈ A. Indeed, if k < 0, let a = maxA and
b = minA. If a′, b′ ∈ A, then a ≥ a′ and b ≤ b′, so a + kb ≥ a′ + kb′, with equality only if a = a′

and b = b′. Similarly, if k > 1, we can take b = maxA and a = max(A \ {b}). If a′, b′ ∈ A with
a′ + kb′ = a + kb but with a′ ̸= a and b′ ̸= b, we must have b′ < b, whence b′ ≤ a and also a′ ≤ b,
so that

a′ + kb′ ≤ b+ ka < b+ ka+ (k − 1)(b− a) = a+ kb,

a contradiction.
Now, since v is a rainbow vector, there exists i with vi = a + kb. It follows that for all x ∈ S,

xi = a and (v− kx)i = b ̸= a, so that v− kx /∈ S and x ̸= v− kx. Consequently, the events x ∈ Sn

and v − kx ∈ Sn are independent, and hence

P(x ∈ Sn, v − kx ∈ Sn) = P(x ∈ Sn)P(v − kx ∈ Sn).

Furthermore, since the sets {x, v − kx} for all x ∈ S are disjoint, we have by independence

P(v ∈ Sn + Sn) = 1−
∏
x∈S

(1− P(x ∈ Sn, v − kx ∈ Sn))

= 1−
∏
x∈S

(1− P(x ∈ Sn)P(v − kx ∈ Sn))

= 1−
∏
x∈S

(1− P(x ∈ Sn)P(v − kx ∈ Tn))

= 1−
∏
x∈S

(1− P(x ∈ Sn, v − kx ∈ Tn))

= P(v ∈ Sn + Tn).

The statement about expectations follows by summing over all v ∈ Rn.

For k = 1, a+ kb = b+ ka, so Sn + Sn will be usually be a lot smaller than Sn + Tn. Thus we
need to modify our strategy. Order the elements of Zn lexicographically, so that, for v, v′ ∈ Zn, if
v and v′ first differ in the ith coordinate, we set v < v′ if vi < v′i. Then, for subsets U, V ⊆ Zn, we
define

U +< V = {u+ v : u ∈ U, v ∈ V, u < v} .

Theorem 35. Fix a fractional set α with ∥α∥ > 1 and a positive integer n, and let Sn and Tn be
drawn independently from αn. If v is a rainbow vector for γ = α+ α, then

P(v ∈ Sn + Sn) = P(v ∈ Sn +< Tn)

and so
E|(Sn + Sn) ∩Rn| = E|(Sn +< Tn) ∩Rn|.
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Proof. First we argue that, since v is rainbow, v/2 ̸∈ An = (supp(α))n. For let a and b be the two
largest elements of A. Then c = a+ b ∈ Γ = supp(γ), so, since v is a rainbow vector, there exists i
such that vi = c. But, by choice of a and b, (v/2)i = c/2 = (a+ b)/2 ̸∈ A, so v/2 ̸∈ An.

Next, as before, we write

S = {x ∈ Zn : x ∈ An, v − x ∈ An} = {x ∈ Zn : P(x ∈ Sn, v − x ∈ Sn) > 0}.

As before, S is a finite set. From the above argument, there is no x for which x = v−x. Furthermore,
the sets {x, v − x} are all disjoint. Therefore

P(v ∈ Sn + Sn) = 1−
∏
x∈S

x<v−x

(1− P(x ∈ Sn, v − x ∈ Sn))

= 1−
∏
x∈S

x<v−x

(1− P(x ∈ Sn)P(v − x ∈ Sn))

= 1−
∏
x∈S

x<v−x

(1− P(x ∈ Sn)P(v − x ∈ Tn))

= 1−
∏
x∈S

x<v−x

(1− P(x ∈ Sn, v − x ∈ Tn))

= P(v ∈ Sn +< Tn).

As in the proof of Theorem 34, the result about expectations follows by summing over v ∈ Rn.

Theorems 34 and 35 give us a good bound on E|Sn+ k ·Sn| since, usually, most of the elements
of Sn + k · Tn are in fact rainbow. Recall that (E|Sn + k · Tn|)1/n → ∥α+ k · α∥ = ∥γ∥ as n → ∞.

Theorem 36. Let α be a fractional set with ∥α∥ > 1, and let γ := α + k · α for a fixed nonzero
integer k. For n ≥ 1, let Sn and Tn be drawn independently from αn. Then there exists an ϵ > 0
such that E|(Sn + k · Tn) \Rn| = o((∥γ∥ − ϵ)n) as n → ∞.

Proof. As above, write Γ = supp(γ). Let p ∈ [0, 1] be such that ∥γ∥ =
∑

z∈Γ γ(z)
p, and let

δ = minz∈Γ γ(z). For z ∈ Γ, let

Qz = {v ∈ Sn + k · Tn : vi ̸= z for all i}.

From the argument in the proof of Theorem 26, we have, for all 0 ≤ q ≤ 1,

E|Qz| ≤

∑
w ̸=z

γ(w)q

n

.

In particular, taking q = p,

E|Qz| ≤

∑
w ̸=z

γ(w)p

n

= (∥γ∥ − δp)n,

and so
E|(Sn + k · Tn) \Rn| ≤ |Γ|(∥γ∥ − δp)n = o((∥γ∥ − ϵ)n,

for any ϵ < δp.
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Theorem 37. Let α be a fractional set with ∥α∥ > 1, and let γ := α + k · α for a fixed nonzero
integer k. For n ≥ 1, let Sn be drawn from αn. Then

E|Sn + k · Sn| ≤ 2∥γ∥n.

Proof. Write
Sn +̂ k · Sn = {a+ kb : a, b ∈ Sn, a ̸= b}.

Then
Sn + k · Sn = (Sn +̂ k · Sn) ∪ ((k + 1) · Sn)

and so
|Sn + k · Sn| ≤ |Sn +̂ k · Sn|+ |Sn|.

The argument in the proof of Theorem 26 shows that

E|Sn +̂ k · Sn| ≤ ∥γ∥n,

and Lemmas 23 and 33 show that E|Sn| = ∥α∥n ≤ ∥γ∥n, so that

E|Sn + k · Sn| ≤ 2∥γ∥n,

as required.

Proof of Theorem 4. Let α be a fractional set with ∥α∥ > 1, and suppose Sn ⊆ Zn is drawn from
αn. We have E|Sn| = ∥α∥n and Var|Sn| ≤ ∥α∥n from Lemmas 23 and 32 respectively. It remains
to show that

lim
n→∞

(E|Sn + k · Sn|)1/n = ∥α+ k · α∥.

Let γ := α+ k · α. From Theorem 37 we have, for all nonzero k,

lim sup
n→∞

E|Sn + k · Sn|1/n ≤ ∥γ∥.

Now, if k ̸= 1, Theorem 34 gives

E|Sn + k · Sn| ≥ E|(Sn + k · Sn) ∩Rn|
= E|(Sn + k · Tn) ∩Rn|
= E|Sn + k · Tn| − E|(Sn + k · Tn) \Rn|.

By Theorem 24, we have E|Sn + k · Tn|1/n → ∥γ∥, and Theorem 36 gives us an ϵ > 0 such that
E|(Sn + k · Tn) \Rn| = o((∥γ∥ − ϵ)n). Consequently, we have

lim inf
n→∞

E|Sn + k · Sn|1/n ≥ ∥γ∥

and hence E|Sn + k · Sn|1/n → ∥γ∥, as required.
When k = 1, Theorem 35 gives

E|Sn + Sn| ≥ E|(Sn + Sn) ∩Rn|
= E|(Sn +< Tn) ∩Rn|
= E|Sn +< Tn| − E|(Sn +< Tn) \Rn|
= 1

2E|Sn +̂Tn| − E|(Sn +< Tn) \Rn|
≥ 1

2(E|Sn + Tn| − E|Sn|)− E|(Sn +< Tn) \Rn|
= 1

2(E|Sn + Tn| − ∥α∥n)− E|(Sn +< Tn) \Rn|.
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Now, if ∥γ∥ = ∥α∥, we certainly have E|Sn + Sn| ≥ E|Sn| = ∥α∥n = ∥γ∥n, so we may assume
∥γ∥ > ∥α∥. In this case, Theorems 24 and 36 now yield

lim inf
n→∞

E|Sn + Sn|1/n ≥ ∥γ∥

and hence E|Sn + Sn|1/n → ∥γ∥, as required.

Corollary 38. Let α be a fractional set with ∥α∥ > 1, and let γ := α+ k ·α for k ̸= 1. For n ≥ 1,
let Sn be drawn from αn. Then, if γ is strictly spartan (i.e.,

∑
n∈supp(γ) γ(n) log γ(n) < 0), then

E
(
|Sn|2 − |Sn + k · Sn|

)
= o(E|Sn|2).

Proof. If γ = α+ k · α is spartan, then ∥γ∥ = ∥α∥2. We have

E|Sn + k · Sn| ≥ E|Sn + k · Tn|+ o((∥γ∥ − ϵ)n)

= E|Sn||Tn|+ o(∥γ∥n) + o((∥γ∥ − ϵ)n)

= (E|Sn|)2 + o(∥γ∥n)
= E(|Sn|2)−Var|Sn|+ o(∥γ∥n)
= E(|Sn|2) + o(∥γ∥n),

where the first line follows from Theorems 34 and 36 (as in the proof of Theorem 4), the second
line follows from Lemma 31, and the last line is from Lemma 32. The conclusion follows, since the
random variable |Sn|2 − |Sn + k · Sn| is always nonnegative.

Corollary 39. Let α be a fractional set with ∥α∥ > 1, and let γ := α + α. For n ≥ 1, let Sn be
drawn from αn. Then, if γ is strictly spartan (i.e.,

∑
n∈supp(γ) γ(n) log γ(n) < 0), then

E
(
1
2 |Sn|2 − |Sn + Sn|

)
= o(E|Sn|2).

Proof. If α+ α is spartan, then ∥γ∥ = ∥α∥2. We have

E|Sn + Sn| ≥ 1
2E|Sn + Tn|+ o(∥γ∥n)

= 1
2E|Sn||Tn|+ o(∥γ∥n)

= 1
2(E|Sn|)2 + o(∥γ∥n)

= 1
2E(|Sn|2)− 1

2Var|Sn|+ o(∥γ∥n)
= 1

2E(|Sn|2) + o(∥γ∥n),

where the first line follows from Theorems 35 and 36 (as in the proof of Theorem 4), the second
line follows from Lemma 31, and the last line is from Lemma 32. The conclusion follows, since the
random variable 1

2 |Sn|2+ 1
2 |Sn|− |Sn+Sn| is always nonnegative, and E|Sn| = ∥α∥n = o(∥γ∥n).

Theorem 5 follows from the last two corollaries, Theorem 4, and Markov’s inequality, noting
that the random variables |Sn|2−|Sn+k ·Sn| (for k ̸= 1) and 1

2 |Sn|2+ 1
2 |Sn|− |Sn+Sn| are always

nonnegative.
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4.4 Ruzsa’s method, and Hennecart, Robert and Yudin’s construction

In [15], Ruzsa constructs sets by taking a finite set S, and a fixed probability 0 < q < 1, and
selecting subsets of Zn by taking each element of Sn independently with probability qn. In our
terminology, this is the same as drawing from αn, where α is the fractional set q1S .

Let us suppose that |S| = M and |S + k · S| = N , and write

S + k · S = {x1, . . . , xN}.

For 1 ≤ i ≤ N , write λi for the number of ordered pairs (s1, s2) ∈ S2 such that xi = s1 + ks2.
We say that λi is the multiplicity of xi, and that the multiset {λ1, λ2, . . . , λN} is the multiplicity
spectrum of the fractional dilate S + k · S. Note that

∑N
i=1 λi = M2. With these definitions, we

have

(α+ k · α)(x) =

{
0 if x /∈ S + k · S,
q2λi if x = xi.

Theorem 20 now specializes to the following.

Theorem 40. For a finite set S ⊆ Z, and a fixed probability 0 < q < 1, let α = q1S. Then, for a
nonzero integer k, with M,N, λi defined as above, and with γ := α+ k · α, we have

∥γ∥ = ∥α+ k · α∥ =


(qM)2 if q2 ≤

∏
i λ

−λi/M
2

i (γ is spartan)

N if q2 ≥
∏

i λ
−1/N
i (γ is opulent)

q2p
∑

i λ
p
i if q2 =

∏
i λ

−Λ(p)
i (γ is p−comfortable),

where

Λ(p) =
λp
i∑N

1 λp
j

.

Before proceeding to the Hennecart, Robert and Yudin construction, we first give an easier example,
using the set {0, 1, 3, 7}.

Claim 41. For all ϵ > 0, there exists a set S with |S − S| > |S|2−ϵ and |S + S| < |S|1.8983+ϵ.

Using the proof of Corollary 7 from the introduction, this will follow from the next claim (just as
Corollary 7 follows from Theorem 6).

Claim 42. There exists a fractional set α for which ∥α∥ > 1, α − α is strictly spartan (so that
∥α− α∥ = ∥α∥2), and ∥α+ α∥ ≤ ∥α∥1.8983.

Proof. Let S = {0, 1, 3, 7}, and let 1
4 < q < 1 be fixed. Then S + S = {0, 2, 6, 14, 1, 3, 7, 4, 8, 10},

with corresponding multiplicities {1, 1, 1, 1, 2, 2, 2, 2, 2, 2}. From Theorem 40, we have

∥α+ α∥ =


(4q)2 if q ≤ 2−

3
8 ,

10 if q ≥ 2−
3
10 ,

2q2p(2 + 3 · 2p) if q = 2
− 3·2p

2(2+3·2p) .

On the other hand, we have that S − S = {−7,−6,−4,−3,−2,−1, 0, 1, 2, 3, 4, 6, 7}, with corre-
sponding multiplicities {1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1}, so that

∥α− α∥ =


(4q)2 if q ≤ 2−

1
4 ,

13 if q ≥ 2−
1
13 ,

q2p(12 + 4p) if q = 2−
4p

12+4p .
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Note that
1
4 < 2−

3
10 < 2−

1
4 ,

so that if we let q be just slightly less than 2−
1
4 , α− α will be strictly spartan, and also

∥α∥ = 4q = 2
7
4 − ϵ, ∥α+ α∥ = 10, ∥α− α∥ = (4q)2 =

(
2

7
4 − ϵ

)2
,

so that
∥α+ α∥ < ∥α∥

4 log 10
7 log 2

+ϵ′
< ∥α∥1.8983,

as required.

Hennecart, Robert and Yudin [3] constructed sets Ak,d ∈ Zd+1 for which |Ak,d − Ak,d| is much
larger than |Ak,d +Ak,d|. Their construction is

Ak,d = {(x1, . . . , xd+1) : x1, . . . , xd+1 ≥ 0, x1 + · · ·+ xd+1 = k}.

A standard textbook argument shows that |Ak,d| =
(
k+d
d

)
. It turns out that the multiplicity

spectrum for Ak,d −Ak,d is particularly easy to describe.

Theorem 43. The multiplicity spectrum for Ak,d −Ak,d consists of

• one copy of
(
k+d
d

)
•
∑min(t,d)

i=1

(
d+1
i

)(
t−1
i−1

)(
t+d−i
d−i

)
copies of

(
k+d−t

d

)
, for 1 ≤ t ≤ k.

Proof. Clearly, the multiplicity of 0 ∈ Ak,d −Ak,d is |Ak,d| =
(
k+d
d

)
.

For the other multiplicities, fix 0 ̸= w = (w1, . . . , wd+1) ∈ Ak,d − Ak,d. Then w = x− y, where
x = (x1, . . . , xd+1) and y = (y1, . . . , yd+1) are nonnegative vectors summing to k. It follows that∑

iwi = 0.
Next, write w+ for the vector containing only the positive coordinates of w, so that

w+ = (max {w1, 0} , . . . ,max {wd+1, 0}),

and write w− for the corresponding vector with the negative coordinates. Then, for all i, we have
max {wi, 0} ≤ xi, so that 1 ≤

∑
i(w

+)i := t ≤ k. If w is any integer vector with
∑

iwi = 0, and x
and y are nonnegative vectors such that w = x − y, then the vector z = x − w+ is a nonnegative
vector with

∑
i zi = k − t. Conversely, for any such z, the vectors x = w+ + z and y = z − w− are

nonnegative vectors, both summing to k, and satisfying w = x− y. Consequently, the multiplicity
of w in Ak,d − Ak,d is just the number of choices for z, i.e., the number of nonnegative (d + 1)-

dimensional vectors summing to k − t. This number is
(
k−t+d

d

)
.

To calculate the number of integer vectors of length d+1, summing to 0, whose positive elements
sum to t > 0, we classify such vectors according to the number i of their positive elements. This
number must be in the range 1 ≤ i ≤ min {t, d}. The number of choices for the locations of the i
positive elements is

(
d+1
i

)
. The number of choices for the i positive numbers summing to t equals

the number of choices for i nonnegative numbers summing to t − i, which is
(
t−1
i−1

)
. Finally, the

number of choices for the d+ 1− i nonpositive numbers summing to −t is
(
t+d−i
d−i

)
.

This allows us to prove Theorem 6, namely, that there exists a fractional set α for which ∥α∥ > 1,
α− α is strictly spartan, and with ∥α+ α∥ ≤ ∥α∥1.7354.
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Proof of Theorem 6. Our α will be q1Ak,d
, where k and d will be chosen later, and where 0 < q < 1

is a probability that will be chosen in terms of k and d. For 0 ≤ t ≤ k, let λt =
(
k+d−t

d

)
. Let µ0 = 1,

and, for t > 0, let

µt =

t∑
i=1

(
d+ 1

i

)(
t− 1

i− 1

)(
t+ d− i

d− i

)
.

Now, from Theorem 43, we know that the nonzero values of α− α consist of µt copies of q
2λt, for

each 0 ≤ t ≤ k. Write A = Ak,d −Ak,d. Then, from Theorem 20, α− α is strictly spartan when∑
x∈A

(α− α)(x) log2(α− α)(x) < 0,

or
k∑

t=0

q2λtµt log2(q
2λt) < 0.

Rearranging, we need
k∑

t=0

2λtµt log2 q < −
k∑

t=0

λtµt log2 λt.

In summary, for α− α to be strictly spartan, we need q < 2−f(k,d), where

f(k, d) =

∑k
t=0 λtµt log2(λt)

2
∑k

t=0 λtµt

.

We need to show that we can choose q so that, in addition, ∥α∥ = q
(
k+d
d

)
> 1. For this, we need

an upper bound on f(k, d). But 2f(k, d) is just a weighted average of the k + 1 numbers log2 λt.
Therefore

2f(k, d) =

∑k
t=0 µtλt log2 λt∑k

t=0 µtλt

≤ max
t

log2 λt = log2 λ0 = log2

(
k + d

d

)
.

Consequently, we have 2−f(k,d) ≥
(
k+d
d

)−1/2
, so that if we choose q satisfying(

k + d

d

)−1

< q <

(
k + d

d

)−1/2

≤ 2−f(k,d) =: p(k, d)

then α− α will be strictly spartan, and we will also have ∥α∥ > 1.
Finally, we turn to α+ α. We have

Ak,d +Ak,d = {(x1, . . . , xd+1) : x1, . . . , xd+1 ≥ 0, x1 + · · ·+ xd+1 = 2k},

so ∥α + α∥ ≤ |Ak,d + Ak,d| =
(
2k+d
d

)
. Note that we believe α + α is opulent, so we have equality

here, but we do not need that for this proof. If we let

β = β(k, d) =
log
(
2k+d
d

)
log(p(k, d)|Ak,d|)

,

it follows that ∥α + α∥ ≤ ∥α∥β. Computer calculations show that the function β(k, d) seems to
have a global minimum of β = 1.735383 . . . at d = 14929 and k = 987.
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4.5 MSTD sets and the region F1,−1

In this subsection, we collect all the results displayed in Figure 1.
For a finite set A ⊂ Z, with sumset A+A and difference set A−A, write

|A+A| = |A|x and |A−A| = |A|y.

In 1973, Freiman and Pigarev [11] proved

|A+A|3/4 ≤ |A−A| ≤ |A+A|4/3 or 3
4x ≤ y ≤ 4

3x. (1)

Noting that 1 ≤ x, y ≤ 2, this is weaker than the best known bounds, proved by Ruzsa [14, 15]:(
|A+A|
|A|

) 1
2

≤ |A−A|
|A|

≤
(
|A+A|
|A|

)2

or y ≤ 2x− 1 and x ≤ 2y − 1. (2)

The upper bound comes from taking B = C = −A in Ruzsa’s triangle inequality:

|A||B − C| ≤ |A−B||A− C|,

and the lower bound comes from taking B = C = −A in Corollary 7.3.6 of [16]:

|A||B + C| ≤ |A+B||A+ C|.

Together, these results show that the shaded regions in Figure 1 are all infeasible.
Next we turn to MSTD sets; these are sets A satisfying |A + A| > |A − A|. The terminology

is due to Nathanson, and stands for “more sums than differences”. According to Nathanson (see
Footnote 1 of [8]), Conway found the first MSTD set in 1967:

A = {0, 2, 3, 4, 7, 11, 12, 14}.

This is the smallest MSTD set, it’s unique among sets of size 8 up to scaling and shifting, and it
satisfies

|A| = 8 |A−A| = 25 |A+A| = 26.

Various families of MSTD sets are known. The record-breaker, in terms of minimizing both y
x and

y−1
x−1 (in our notation), is due to Penman and Wells [9]. They construct a family of sets At, for
t ≥ 1, with

|At| = 5t+ 17 |At −At| = 26t+ 61 |At +At| = 32t+ 63.

Both these constructions are also illustrated in Figure 1, with the latter one plotted for real t ≥ 1.
Finally, we discuss the construction of Hennecart, Robert and Yudin [3]. As already mentioned,

their construction is

Ak,d = {(x1, . . . , xd+1) : x1, . . . , xd+1 ≥ 0, x1 + · · ·+ xd+1 = k},

and they show that

|A| =
(
k + d

d

)
|A+A| =

(
2k + d

d

)
|A−A| =

min(d,k)∑
t=0

(
d

t

)2(k + d− t

d

)
.
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Taking k = ad, for a > 0, yields the curve shown in Figure 1. Hennecart, Robert and Yudin choose
k = d/2, so that

|A| =
(3d

2

d

)
|A+A| =

(
2d

d

)
|A−A| ≥ max

0≤t≤d
2

(
d

t

)2(3d
2 − t

d

)
.

This results in the asymptotics

log |A+A|
log |A|

→ 4 log 2

3 log 3− 2 log 2
≈ 1.4520

and
log |A−A|
log |A|

→ 4 log(1 +
√
2)

3 log 3− 2 log 2
≈ 1.8463,

leading to the point (1.4520, 18463) plotted in Figure 1.

5 Open Questions

We introduced the concept of a fractional dilate as a more general version of Ruzsa’s method from
[15]. Ruzsa’s method is the specialisation where a fractional dilate has all nonzero values equal.
However, we in fact only used this same specialisation to prove Theorem 6. We believe that using a
more general fractional dilate supported on the Hennecart, Robert and Yudin sets Ak,d could give
a better bound than 1.7354. In particular, the best bound one can get from a Ruzsa-style dilate
on A2,d is that for d = 23, which with a value of

q = 5−
1

300 2−
46
625 12−

1129
15000

yields a bound of 1.7897. However, if one takes a fractional dilate on A2,22 with a value of approx-
imately 0.9951 on the elements of the form 2ei, and approximately 0.7617 on the elements of the
form ei + ej , one can instead get a bound of 1.7889.

Our proof of Theorem 6 relies on the fact that if Sn is drawn from αn, and α − α is spartan,
then the size of Sn − Sn is close to its expected value. We believe that this holds without the
requirement of spartaneity.

Conjecture 44. If α is a fractional dilate with ∥α∥ > 1, k is a positive integer, and An is drawn
from αn, then

lim
n→∞

log |An + k ·An|
n

= log ∥α+ k · α∥.

This would directly imply that various results for the sizes of sums and differences of sets would
also hold for fractional dilates. For example, Ruzsa’s Triangle Inequality would imply that

∥α∥∥β − γ∥ ≤ ∥α− β∥∥α− γ∥

for fractional dilates α, β, γ.
A weaker conjecture is that the feasible regions for dilates coincide with the feasible regions for

fractional dilates.

Conjecture 45. For any fractional dilate α, any positive integer N , and any ϵ > 0, there exists a
finite subset S of the integers such that, for all |k| ≤ N ,∣∣∣∣ log∥α+ k · α∥

log∥α∥
− log |S + k · S|

log |S|

∣∣∣∣ < ϵ.
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We also ask whether the fractional dilate versions of the open questions from Section 3 are true.
For the reader’s convenience, we write out these questions in full. Note that Theorem 20 gives a
useful way of computing ∥α+ α∥ and ∥α+ 2 · α∥.

Question 46. Suppose that α : Z → [0, 1] is a function with finite support. We write

∥α∥ =
∑
i

α(i)

∥α+ α∥ = inf
0≤p≤1

∑
i

 ∑
j+k=i

α(j)α(k)

p

∥α+ 2 · α∥ = inf
0≤p≤1

∑
i

 ∑
j+2k=i

α(j)α(k)

p

.

Are each of the following statements true for all such α?

1. ∥α∥∥α+ 2 · α∥ ≤ ∥α+ α∥2

2. ∥α+ 2 · α∥ ≤ log3 4∥α+ α∥

3. ∥α+ 2 · α∥ ≥ ∥α+ α∥

Since a subset of the integers is just a fractional dilate of its characteristic function, positive
answers to these questions would imply positive answers to the corresponding questions in Section 3.
If either Conjecture 44 or Conjecture 45 is true, the questions in the two sections are equivalent. A
negative answer to any of these questions would either lead to an extension of the feasible region
F1,2, or to a better understanding of the above conjectures.

The biggest open question we leave is whether fractional dilates can find a use elsewhere.
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