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Abstract

Given a set of integers A and an integer k, write A+ k- A for the set {a+kb:a € A, be A}.
Hanson and Petridis [6] showed that if |[A + A] < K|A| then |A + 2 A] < K2%|A|. At

a presentation of this result, Petridis stated that the highest known value for W

(bounded above by 2.95) was }ggg. We show that, for all € > 0, there exist A and K with
|A+ A| < K|A| but with |[A+2- A] > K?7¢|A].

Further, we analyse a method of Ruzsa [10], and generalise it to give continuous analogues
of the sizes of sumsets, differences and dilates. We apply this method to a construction of
Hennecart, Robert and Yudin [3] to prove that, for all € > 0, there exists a set A with |A—A| >
|A]27¢ but with |A + A| < |A|}-7354F,

The second author would like to thank E. Papavassilopoulos for useful discussions about how
to improve the efficiency of his computer searches.

1 Introduction and Definitions

The study of the size of the sumset |A + A| and difference set |A — A| (sometimes denoted DA) in
terms of |A| is a central theme in additive combinatorics. For instance, Freiman’s theorem states
that if |[A+ A| < K|A|, then A must be a large fraction of a generalized arithmetic progression, and
the Balog-Szemerédi- Gowers theorem states that if A has large additive energy, then A must contain
a large subset A’ such that |A" + A’|/|A’| is small. For the precise definitions and statements, we
refer the reader to [11]. Given a number x € Z the multiplicity of x in A+ A (and correspondingly
in A — A) are defined by

Multg1a(z) = |[AN(x — A)| =|{(a,b) :a € A,be A,a+ b=z}
Multg—a(z) = [AN (z+ A)| = [{(a,b) :a € A, be A;a—b =z}

For a finite set A C Z, with |A| = n, we have that

A+ Al < n(n+1)
- 2

and |[A—A|<n?-n+1,

with equality in both cases precisely when A is a Sidon set, that is a set containing no nontrivial
additive quadruple (a,b, c,d) € A* with a+b = c+d (and consequently no nontrivial (a, b, ¢, d) with
a—b=c—d). In other words, if |[A + A| is as large as it can possibly be, then so is |[A — A|, and
conversely. In 1992, Ruzsa [10] showed, using an ingenious probabilistic construction, that |A + A|
can be small, while |A — A| can be almost as large as possible, and vice-versa. In particular, he
showed the following.



Theorem 1 (Ruzsa, 1992). For every large enough n, there is a set A such that |A| = n with
|A4+ Al <n?¢ and |A— Al >n? —n?

where ¢ is a positive absolute constant. Also, there is a set B with |B| = n,

2
|B — B| < n*~¢, and |B + B| > %—nQ_c.

A few years later, Hennecart, Robert and Yudin [3] constructed a set A of size n with |[A+ A| ~
nt4519 but |A — A| ~ n!®462 Their construction was inspired by convex geometry, specifically
the difference body inequality of Rogers and Shephard [2]. In the other direction, the study and
classification of MSTD sets (sets with more sums than differences) began with Conway in 1967,
and has now attracted a large literature (see [5] for a recent survey).

Another line of investigation was opened by Bukh [1] in 2008. Given a set of integers A and an
integer k, define the dilate set

A+Ek-A={a1+kaz:a,as € A}.

For k = 1, this is just the sumset, A+ A, and for k = —1 it is the difference set, A — A. Note that,
for example, the dilate set A + 2 - A is generally not the same set as A + A + A, where each of the
three summands can be distinct. We define the multiplicity of z in A+ k- A to be

Mult gspa(z) = [AN (z — k- A)| = [{(a,b) :a € A,bE A,a+ kb= z}].

Bukh proved many results on general sums of dilates A; - A+ - -+ + A\ - A (for arbitrary integers
AL, ..., Ak), including lower and upper bounds on their sizes. Some of these results were phrased in
terms of sets with small doubling, namely, sets A C Z with |A+ A| < K|A]|, for some fixed constant
K (known as the doubling constant). For such a set A, Plinnecke’s inequality [8] (see also [7]) shows
that
|A+2- Al < |A+ A+ Al < K34,

and Bukh asked if the exponent 3 could be improved. This question was answered affirmatively in
2021 by Hanson and Petridis [6], who proved the following.

Theorem 2 (Hanson-Petridis, 2021). If A C Z and |A+ A| < K|A|, then
|A+2- Al < K2%|A|
They were also able to prove a result that improves Theorem 2 when K is large.
Theorem 3 (Hanson-Petridis, 2021). If A C Z and |A+ A| < K|A|, then
|A+2- A < (K|A)YE.

Our contributions in this paper are best understood in the context of feasible regions of the
plane and so we make the following definition.

Definition. For fixed integers k and [, we define the feasible region F},; to be the closure of the
set Ly of attainable points

B, - log|[A+Ek-A| log|A+1-A4]
o log|A] 7 loglA] '

as A ranges over finite sets of integers.



Note that for any k and I, we have that Ey; C [1,2]%, which follows from the fact that |A| <
|A+k-A| <|AJ? for all A. For every k and [, each A produces a point in Ej ;. With A fixed, we can
generate a sequence of sets, indexed by the dimension d, by taking a Cartesian product A% C Z¢,
and then we will have |A% 4 k- A = |A+ k- A|?. The advantage of the logarithmic measure we are
using is that all examples in this sequence, generated from the same set A, correspond to the same
point (x,y) € Ei;. Another useful fact is that the set Fj; is convex. This is proved in Section 2.

The first series of results in this paper concerns the size of the dilate set A+2- A. We present a
construction, the Hypercube+Interval construction, which improves all previous bounds, and is close
to the upper bounds in Theorems 2 and 3 of Hanson and Petridis. Specifically, this construction
shows that graph (x,y) of the piecewise-linear function

2z -1 1§1:§10g%3:1.3548...

y = min (22 — 1, (logz 4)x) {(log3 e log% 3<z<?
is entirely contained in F7 2. This will allow us to prove a partial converse to Theorem 2, namely
that for any € > 0, there exist positive constants K and sets A with |[A+ A| < K|A| but |[A+2-A| >
K?7¢|A|. Thus the true bound here is between 2 and 2.95. We also give some negative results,
showing that neither Sidon Sets, nor subsets of {0, 1} C Z¢, can give rise to feasible points outside
the regions already proved feasible. Finally, we give a lower bound for the region Fj o, which is an
easy consequence of Pliinnecke’s inequality. All these bounds and constructions are illustrated in
Figure 2.

Our next series of results concerns the relationship between the sizes of A+ A and A — A, and
thus relates to the feasible region Fi _;. This is one of the oldest topics in additive combinatorics,
with results going back to Freiman and Pigarev [4] and Ruzsa [9] in the 1970s (and indeed Conway
in the 60s). We analyse and generalise Ruzsa’s method from [10], leading to the following concept
which can be seen as a continuous analogue of the size of a sumset and that of a dilate.

Definition. Define a fractional dilate -y to be a map v : Z — R U {0} with a finite support. We
denote the size of a fractional dilate to be

— inf ,
7l = i > ()
nez

We define a fractional set to be a fractional dilate « for which a(n) <1 for all n € Z. Note that
the formula for the size of a fractional set simplifies to ||| = >_, ;7 a(n).
Given fractional sets o, 5 and an integer k, let a4 k - 5 denote the fractional dilate defined by

(a+k-B)n)= D a@)By).

i+kj=n

Given a fractional set «, let us say that a random set S, C Z" is drawn from o™ if each element of
Z" is chosen independently, and the probability that (i1, iz, ..., i,) is selected is a(i1)a(ia) . . . a(ip).

We can identify an actual subset S of Z with the fractional set 1g and then for any sets S, T,
|S + k- T| can easily be seen to be equal to ||1g + k- 17|

We describe a fractional dilate v as being spartan if ZnEZ:'y(n);éO ~v(n)logy(n) < 0, opulent if
Znez:%n) 20 log ~v(n) > 0 and comfortable if neither of these holds. In the case that - is comfortable,
there will be a unique p € [0, 1] with ZnEZ:'y(n);éO ~v(n)Plogy(n) = 0. If we wish to emphasise, we
will say that v is p-comfortable.

We will show this alternate characterisation of the size of a fractional dilate.



Theorem 4. The size of a fractional dilate v is

> nez V(1) if v is spartan,
{n:n € Z,v(n) # 0} if v is opulent,
Y nez Y(M)P if v is p-comfortable.

In Section 4 and Section 5, we prove the following.

Theorem 5. Let o and B be fractional sets, and suppose Sp,T, C Z" are drawn from " and "
respectively. Then

lim (E|Sy + k- Tu)/" = o+ k- 5|
le+ & - o if [l = 1

(E|Sn + K - Spl)t/™ —
||la|| otherwise.

i,
Furthermore, if a4+ k - B is spartan then
E|Snl[Tn| = [Sn + k- Tn| = o([la+ k- B[[")
and similarly if o« + k - o is spartan then
E[Sn|* = S0+ k- Spl = o(a+k-al*) if k #1

2

—1Sn+ k- Spl = o(la+k-a|") ifk=1

In Section 6, we apply this method to the construction of Hennecart, Robert and Yudin [3], to
construct a fractional set o for which a — « is spartan, but « + « is not.

Theorem 6. There exists a fractional set o for which ||| > 1, o — « is spartan, and with
lac + | < [T

This will allow us to prove that (1.7354,2) is feasible for F _;.

Corollary 7. For all € > 0, there erists a finite subset A C 7 such that |A — A| > |A|>7¢ > 1 but
‘A+A’ < |A’1'7354+6.

Proof. Let a be the fractional set with properties as in Theorem 5, and let .S,, be drawn from .
Pick € in the range (0,¢). We will show that the probabilities of the events |S,| < 0.5|«||",
1S,] > 1.5|a]|”, |Sn — Sn| < 0.15]|a|*™ and |S,, 4+ Sp| > 0.5]|r||17354+<) all vanish as n — oo from
which we will show that S, satisfies the required conditions for A with probability tending to 1.
|Sp| is the sum of independent Bernoulli variables (X; : i € S). Let each variable X; have
probability p; of being 1. Then

Var|S,| = ZVarXZ- = Zpi —p? < Zpi = EI|S,|.
1€S €S €S
We know that E|S,,| is precisely ||«||™, so the variance is at most ||«||™, so by Cauchy’s Inequality:
Pr(||Sn| = [l > 0.5]la]|") = Pr(||Sn| — E[Syll* > 0.25] a*")
< Var|S,|/0.25 a||*"
<4/l



Thus both the events |S,| < 0.5]|«||™ and |S,| > 1.5||a||™ have probabilities that vanish.

Since o — « is spartan, Theorem 5 states that E|S,|> — |S, — S,| is o(||a||*"). Since |S,, — S, | is
always at most as large as |S,|?, it follows that the probability that |S,|* — |S, — Sn| > 0.1]|a||?"
tends to 0. Further, since |S,,| > 0.5||a||™ with probability tending to 1, it follows that |S,, — S, | >
|Sn|? — 0.1]|al|*™ > 0.15||ar||?>™ with probability tending to 1.

Choose €” in the range (0,€). Theorem 5 states that lim, oo (E|S, + S,[)Y/™ = |la + o <
|a]|73%4, so for all sufficiently large n, E|S, + S, | < ||| -7354+<")% 50 by Cauchy’s inequality, the
probability that | S, + Sp| > a(734+<)7 is at most ||a||¢" =)™ which vanishes.

So, for all sufficiently large n, with probability at least a half, 0.5||c|™ < |S,| < 1.5|af™,
0.15]|a||®*™ < |Sp, — Sp| and |S, 4+ S,| < 0.5]|al|(17354+<)7  Since, for all sufficiently large n,
0.15]|cr||?™ > (1.5]a[|™)2~€ and ||o||(17354+)m < (0.5]|c||™) 17354 +¢ it follows that for all sufficiently
large n, with probability at least a half, S, satisfies the conditions of this corollary. O

In the other direction, it follows from results of Freiman and Pigarev [4] and Ruzsa [9] that
(z,2) is not attainable for any x < 3/2. All these results are illustrated in Figure 1.
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Figure 1: The feasible region F; _;

Finally, in Section 7, we discuss many open questions about Fi _; and F} 2, and about feasible
regions in general.



2 Feasible Regions

We remind the reader of the definition of a feasible region. For fixed integers k and [, the feasible
region Fy,; is defined as the closure of the set Ej; of attainable points

log|A+k-A|l log|A+1-A] 9
FEL, = 1.2
o= (g gl f <2

as A ranges over finite sets of integers. Note once again that the inclusion follows from the fact
that |A] < |A+ k- A] < |AJ? for all such A. Since Ej; C [1,2]%, we have also Fj; C [1,2]%. As
mentioned in the Introduction, we now prove that F}; is convex.

Theorem 8. For all nonzero k,l, the feasible region Fy; is convexr, and contains the diagonal
D={(z,z):1 <z <2}

Proof. First we prove the convexity. To do this, we first consider points (z,y), (2/,vy') € Ey,, and
take ¢ € [0,1]. We will show that (tx + (1 —t)a’,ty + (1 — t)y’) € Fj;. Since (x,y) € Ej, there
exists a set A C Z with

|[A+k-Al=|A" and |[A+1- Al = |A)Y.

Likewise, since (2/,y') € Ej, there exists a set B C Z with
|B+k-B|=|B[* and |B+1-B| = |BJY.

Setting 5 = log |B|/log | A|, choose a sequence g1, g2, . . . of rational numbers such that

v 28]
im¢g =———.
i T Tt 148

For each such ¢; = r/s, we consider a set A; C Z°, defined as

Ai=AXAX-- - XxXAXBxBx--+-xDB,

T S—1Tr

in which there are r factors of A and s — r factors of B. We have
|Ai| = |A["[B]"™,
|Ai + k- Ag| = |A["|B|*7)% | and
| A +1- A;| = |A"™Y| B

And so,
log |A; + k- A;|  rxlog|A| 4 (s — r)xlog | B
log|4;|  rlog|A|+ (s —7)log|B]
_ g+ (1 —g)r'B
g+ (1 —qg)B "~

which tends to tz + (1 — t)z’ as i — oco. Similarly,

t 1—1t)y
og [} — ty + ( '

as i — oo. Consequently, (tz + (1 —t)z',ty + (1 — t)y') € Fy.



Now, given points (z,y), (z',y’) € Fu, we may take sequences of points (z;,y;) and (2},y;)
from Ej; tending to (z,y) and (2’,y’) respectively. For each j, the above argument shows that

(tzj + (1 —t)z, ty; + (1 = t)y}) € Fry.
Consequently, letting j — oo, we have that
(tx+ (1 —t)2', ty + (1 — t)y') € Fry,

and the convexity is proved.
To show that (1,1) € Fj,, we consider the set A := Ay = {1,2,..., N} for N > max(k,[). We
have
|[A+k-Al=k+1)(N—-1)+1 and |[A+1-Al=(1+1)(N—-1)+1,

so that, as N — oo,

log\A—Hﬁ-A]’ log|A+1- Al S 1),
log [ A] log | A]
To show that (2,2) € Fy, let b > max(|k|, |l|) + 1, and consider the set B = {1,b,b%,...,bN}. We

have
|B+k-B|>3B? and |B+1-B|> 3|BJ,

so that, as N — oo,

log| B+ k- B| log|B+1- B S @2.2)
log | B| " log|B] T

It now follows by convexity that D = {(z,z) : 1 <z <2} C Fj. O

This result easily generalises to higher dimensions.

3 Construction for Fi»

In this section, we present various results about the feasible region Fi 5. As stated in the introduc-
tion, we will in particular give a partial converse to a result of Hanson and Petridis (Theorem 2).
If set A is the union of sets Aq,..., A,, then it is clear that
maxi<i<n |A;| < |4 < Z1§z’§n | A
maxi<i<j<n [Ai + Aj] < JA+A] <Y oicien |Ai + Al and
maxi<ij<n |Ai +2-Aj] < JA+2- Al <300 1A+ 20 Ayl
Now, we are ready to describe the hypercube + interval construction. To this end, let

n—1 k
) 4% —1
H, = { g a;4" Vi, a; € {0,1}} and I = [0, 3 > NZ.
=0

So, H,, denotes the set of all natural numbers with a base 4 representation being of length at
most n and containing only Os and 1s, making up the hypercube portion of our construction. Of
course, [ is simply an interval of integers. We begin by giving the sizes of various sumsets related
to H, and I}.




Theorem 9. Forn >k > "TH, the sizes of various sets, sumsets, and dilates are as follows:

4k — 1
x| = > [Hp| =2"
|Hy, + H,| =3"
L
|Hy, + Ii| =2 28 > Iy + 1|

|Hn+2-Hn‘:4nZ’Hn—|—2-fk|,|Ik—|—2~Hn|,|Ik—}—2~Ik|.

Proof. We leave to the interested reader the job of calculating the sizes of |Iy + Ix|, |[H, + 2 - I,
|I+2-Hyl|, |[I + 2 Ij| (spoiler warning: they are 24kT_1 —1, 2nF1=k(2 x 4k=1 1) twice and 4F — 3
respectively.)

Since there are two choices for each a; where 0 < i < n — 1, we have that |H,| = 2". Also,
since (4F —1)/3 is an integer, we know that |Ij,| = (4¥ —1)/3. Further, since k > %2, 4k > on+2 >
1+3x2" s0 (48 —1)/3 > 2n.

Note that H, + H,, = {Z?:_ol a4 : Vi, a; € {0,1, 2}} In other words, elements of H, + H,, are
natural numbers whose base 4 representation is of length at most n and contains only Os, 1s, and 2s.
Thus, |H, + H,| = 3". Similarly H, + 2- H,, are natural numbers whose base 4 representation is of
length at most n and contains only 0Os, 1s, 2s and 3s, which is [0,4"). Further, since the maximum
element of H,, is at least as large as the maximum element of Ij it is clear that all of H, + 2 - I,
It +2- Hy, and I, + 2 - I}, are subsets of [0,4") and therefore of size at most 4.

For H,, + Iy, note that H,, is the sum of the sets {0, 1}, {0,4} all the way up to {0,4"~'}. Now
if p > ¢ are positive integers, then the sum of the integer interval [0, p) with the set {0, ¢} is the
integer interval [0,p + ¢). Thus

Lo+ {0, 1} +{0,4} + ... +{0,4* 1}

4k — 1
=0, 3 )+{0,1} +{0,4} + ...+ {0,4%1}
=[0, 3 +1) +{0,4} +...+{0,4" "}
gk 1
=[0,2 ) 2 I + 1.

Further the set {0,4%} + ...+ {0,4" 1} consists of multiples of 4%, which are all further than
2% apart, so H, + I consists of 27—k intervals of length 24%1 and contains Iy + Ij. ]

Let A, = Hy U I}. Then, using Theorem 9, we can show the following.

Corollary 10. Let a be any real number in the open region (%, 1). Then as n — oo,

log |An, lan| ‘
n

8| Anjan) 1 J‘—>maux(log3, ta

— alog4,

log4), and
n

log |An,\_omj +2- An,\_omj ‘
n

— log 4.



Proof. Note that if £ is a fixed constant and a,; for 1 <7 <k and 1 <n are positive integers and
¢; for 1 <i < k are real numbers such that lim,,_, loga, ;/n — ¢; for all i, and integers b,, satisfy
that max; a, , < by, <> . ang, then

. logb,
lim

n—oo 1N

— max{cy,...,cp}

Let us write k = |an]. For the first part of the Corollary, we note that by Theorem 9, we have

log | H, log |1,
lim M:10g2< lim M:al

n—00 n n—00 n

og4.

Since we know that I, C A, and |4, x| < |Hp|+ |1k, it follows that lim,, o log |A, x|/n = alog 4.
For the sumsets, we note that (again using Theorem 9)

log |Hn + Hn|
m —

li =log3, and
n—00 n
log |Hy + I 1 log | Ty + I
im 28 Tl g 1009 alogd = 25 % loga > Tim 28k Tl
Nn—00 n 2 n—00 n

Since we know that H, + H, and H, + I}, are both subsets of A,, ;, + A, ; and that |4, , + Ay x| <
|Hy, + Hy| + | Hp, + Ii| + | I, 4 11|, it follows that lim,, . log | Ay i + Ay k| /7 = max(log 3, HTO‘ log4).
Finally, for the dilates, we have

log |H,, +2 - H, log |H, +2-1
lim og [Hyn + nl =log4 > lim og [Hyn + k|,
n—o00 n n—oo n
. log |l +2- Hy|
lim ,
n—oo n
. log\Ik+2Ik]
lim —=-——— %,
n—o0 n
Thus log | A,k + 2 - Ay k|/n — log4. O

The upper limit in the second interval above is log 3 when « is below Qiggi — 1, and HTC“ log 4

above it. As mentioned above, this gives a partial converse to Theorem 2

Corollary 11. For all € > 0, there exist sets S and numbers K > 1 with |S + S| < K|S| but with
IS +2-8| > K*€|S].

Proof. Let % <a< 2ig§i — 1. Then Corollary 10 shows that

log ‘ATL,LQHJ + 2 An,[anj’ - log ‘An7tanJ’ = 10g4 — alog4 o 1l -«

log |Ap,jan) + An,|an)| =10 | An,jan)] HTO‘ logd — alogd I_Ta

=2.

O]

We now use this corollary to show that we have feasible points in Fj 2. Let the function f :
[1,2] — [1,2] be defined by

0g(9/4)

(log, 3)x if % <z <2

7(x) {W“) if 1< o< L
) =



Corollary 12. For all1 < <2, (f(B),5) € Fi2.
Proof. Let o = 1/f, then

alogdf(B) = alog4maX(%(5 +1), (logy 3)3)

1+« logS)
200 " alog4

= alog 4 max(

1+«
2

Thus Corollary 10 gives the existence of sets where

= max( log 4,log 3).

log [Ay, |an)|/n — alog4,
log |Ap,|an) + An,an)l/7 — alogdf(B), and
log [Ap jan) + 2 Ap jan)|/n — logd = alog 4.
So
log ’An,l_omj —|—An7tan“/log ’An,LanJ‘ — f(B) and
log| Ay, |an| + 2 Ay lan|l/10g Ay |an|| — B
O
Let us quickly discuss a lower bound on the feasible region given by Pliinnecke’s inequality [8].
Theorem 13 (Pliinnecke 1970). Let U and V be finite subsets of Z and let X C U such that

_ X4V _ X +V
X=X

for all nonempty subsets ) # X' C X. Then, for any set W, we have

X + V||X +W|
X

X +V+W|<

This gives a simple upper bound on |A + A| in terms of |4+ 2 - A|.

|A42-A2

Corollary 14. For all sets A, |A+ A| < ]

Proof. Let 1 <t < 2 be such that |4+ 2- A| = |A|'. Suppose that S C A minimises ‘ST52|'A|. Then

. . t
_ISH2 Al A2 Al AN
Bl 4] |A]

Further, we note that

1S +2- A2
|5

where the second inequality is Pliinnecke’s inequality. Thus, we have

|A+2- A?
Al

A+ Al=12-A+2-Al<[S+2-A+2-A|< — 2IS| < p?|A|,

A+ Al =2-A+2- A < p*|A| < (JAI71)?]A] =

10



So, we know that if log |A + 2 - A|/log|A| < t, then log |A + A|/log|A| < 2t — 1. This means
that anything below the line y = 1 4 x/2 is not in the feasible region Fj 5.

Also, note that the two results of Hanson and Petridis (Theorems 2 and 3) give two upper
bounds on Fj g, namely the lines y = 2.952 — 1.95 and y = 4¢/3. The first follows from the fact
that if |A + A| = |Al*, then by Theorem 2, we have |A + 2 - A| < |A[*%1=195 The second follows
similarly. We put all of these results together into Figure 2.

Corollary 12 shows that lines OD and DC are feasible, while Theorem 8 shows that the line
OF is feasible and hence that the entire quadrilateral ODCFE is feasible.

For infeasibility, the two results of Hanson and Petridis (Theorems 2 and 3) show that nothing
can be feasible to the left of the line OA and above the line AB respectively. Specifically, if
|A + A| = |AJ%, Theorem 2 implies that |A + 2 - A| < |A]*97195 and Theorem 3 implies that
|A 42 A] < |AM/3,

2 B c E
|
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/
iliheorem:3{(HP)
/

/ /P
A

/ _~ Plunneck

-
N

Figure 2: The feasible region F o

We leave as open questions whether any of the sides of the quadrilateral ODCE (other than
CE, for which we have a proof but there is not enough space to give it here) are actually hard
bounds on feasibility. Specifically, we ask the following;:

Question 15. Is it true that nothing to the left of the line ODB is in Fi3. In other words,
if |A+ Al = |A]Y, is |[A+2- A| < |A|*22 In yet more other words, is it true that for all A,
|A||A+2- Al < |A+ A||[A+ A

Question 16. Is it true that nothing above the line DC' is in Fy . In other words, is it true that
% < }2—‘;% for all sets A? In yet more other words, is it true for all n that if |A + A| < 37,

then |[A+2- Al <4"?
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Question 17. Is it true that nothing below the line OF is in Fy . In other words, are there no
sets A with [A+ Al > |A+2-A|?

We coin the term MST2D sets (or more sums than 2-dilates sets) for counterexamples to Ques-
tion 17. One of the first places you might think to find such a set is a Sidon set (that is, a set for
which |A + A] is as large as it can be). However, one can easily show that a Sidon Set cannot be
an MST2D set.

Lemma 18. If A is a Sidon set with at least two elements, then |[A+2- A| > |A+ A.

Proof. Adding and multiplying non-zero constants to A does not change |A + A| or |A 4+ 2 - A|.
Thus we can assume that 0 € A and gedA4 = 1.

Let n = |A|. If X, X5 are i.i.d drawn from any distribution on a finite set S then Pr(X; =
Xo) > 1/15|.

Thus if Ay, Ay, Az, A4 are i.i.d. drawn from the uniform (or indeed any) distribution on A, then
|[A+2-A>1/Pr(A;1 +2- Ay = A3+ 2- Ay). Now since A is a sidon set,

1/n, if k=0
PI‘(A4—A2:]€):PI‘(A1—A3:]€): 0, lka@éA—A

1/n?, otherwise.

Thus Pr(A; +2- Ay = A3 +2- Ay) = Pr(A; — A3 = 2(A4 — A3)) = 1/n? + K/n*, where K is
the number of non-zero elements of A — A which are double some other element of A — A.

Now there are n? — n elements of A — A, but A contains elements of both parities (as 0 € A
and gedA = 1), so A — A contains at least 2(n — 1) odd elements, so K < n? — 3n + 2.

Thus

|A+2-Al > 1/(1/n*+ (n* = 3n +2)/nh)
=n?/(2-3/n+2/n?)
= (n%/2)/(1 - 3/(2n) + 1/n?)
> (n?/2)(1+3/(2n) — 1/n?)
=n?/2+3n/4—1/2> (n® +n)/2=|A+ Al

O]

Similarly, one of the first things you might think to look for a counterexample to Question 16
is a ”2-Sidon” set (ie one where |A+2- A| is as large as it can be). An easy way to construct such
sets is a subset of the Hypercube {0,1}". We can show that such sets in fact satisfy the condition
of Question 16

Lemma 19. Suppose A, B are subsets of the Hypercube {0,1}", then

log 4
A+2.B) <8

A+ B|.
log3’ + 5]
Proof. Define a function f : N> — N iteratively by: f(i,§) = ij if i < 1 or j < 1 and otherwise
fi,3) = min(f(ix, 1) + f iz, j2) + max(f (i1, j2), f(i2, 1)) : i1 +i2 = 4,1 + j2 = j).-

We claim that for any finite subsets A, B of the Hypercube, |A+B| > f(|A|,|B|). This is clearly
true if |[A| <1 or |B| < 1. Otherwise, assume the result is true for all smaller |A| + |B|. There is

12



some coordinate i for which not every element of A is identical. Then if Ay = {z : x € A|z; = 0}
and we define A1, By and Bj correspondingly, it is clear that

A+ Bl={z:2 € A+ Blz; =0} +{z:2 € A+ Blx; =1} + |{z: 2z € A+ B|z; = 2}|
= |Ao + Bo| + (Ao + B1) U (A1 + Bo)| + |A1 + Bi|
> [Ao + Bol + [A1 + Bi| + max(|Ag + Bi, |41 + Bol)
> f(lAol, [Bol) + f(|A1], |B1l) + max(f(|Aol, |B1l), f([A1], | Bol))
> f(lA],1B]),

where the last two inequalities are the inductive hypothesis and the definition of f respectively.
We claim also that f(i,7) > (ij)® where 8 = 1o§ 3 for all 4,j. This is clearly true if i < 1 or
7 <1 and to prove by induction we need to show that

((i1 + d2) (j1 + 52))7 < (i141)° + (inga)? + max((i152)”, (i21)")

for all non-negative integers i1, i, j1, j2-

To that end, note that for ¢ > 1, (t*? —1)/(t — 1) is the average value of (23 — 1)xz2°~! over the
range = € [1,¢]. Since 0 < 23 — 1 < 1, this is a concave function and hence this average value is
greater than (263 —1)((1+1)/2)?*~!. Further, since (23 —1) > 226~1  this is larger than (1+¢)26~1.

So it follows that for all t > 1

(t% — 1)/(t —1)> (1 +t)%!
(7 = 1) > (t = 1) (1 4 )*!
B — 7B > (£ — 1) (1 + )21 P
(=1 +t) (14 1)22

t2 t8-1
= (1 -1/}t +1/t+2) 1

It then follows for all 7 > 1, since r+1/r > 2, that (t7~1—t=F=1) > (1—1/8)(t+1/t4+r+1/r)P1
for all t > 1, and hence that the function g(t,r) = t* +¢# +rf — (t + 1/t + 7+ 1/r)? is increasing
in the range ¢t > 1 and therefore that g(t,r) > g(1,7) =2+ 7% — (2 + 7+ 1/r)5.

Now g < 1,soforallr>1

(1+1/r)*2<1
1+ 1/ L <141/r
(1+1/m)* t1-1/r)<1
(L+1/m))1-1/r%) <1
C+r+1/r)7 1 -1/ < P71
0<pBrPt —(1—1/r)2@2+r+1/r)".
It follows that g(1,7) is increasing in 7, so for all » > 1, > 1, g(t,r) > g(1,r) = 3 — 4% = 0.

Thus for all ¢t > 1,7 > 1, t° +t=% 478 > (t + 1/t +r +1/r)5. By replacing ¢ with 1/t if necessary,
we see this inequality is true for t > 0, r > 1.

Now if we let = i and r = PO, we get (i1i)° + (izd2)” + max(isja, izj1)” >
((i1 + i2)(j1 + j2))? as was required. 0
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4 Fractional Dilates

We remind the reader of the definition of fractional dilates and their size - a fractional dilate ~ is
amap v:Z — RT U {0} with a finite support. We denote the size of a fractional dilate to be

— P
[ Oigglzv(n)
nez

We describe a fractional dilate v as being spartan if ZnGZ:'y(n);éO v(n)logy(n) < 0, opulent if
> nez: y(n)£0 logy(n) > 0 and comfortable if neither of these holds. In the case that v is comfortable,
there will be a unique p € [0, 1] with ZnGZ'y (n)2£0 v(n)Plogvy(n) = 0. If we wish to emphasise, we
will say that v is p-comfortable. We will first prove Theorem 4 giving an alternate characterisation

of [|]]-

Proof of Theorem 4. For a fixed v with support S, define a function f : [0,1] — R by f(p )
Y onesY(n)P. It is clear that f is doubly differentiable and that f”(p) = Znes(log v(n))2y(n)P >
Now if v is spartan, then f'(1) = > _gv(n)logy(n) < 0. It follows that f'(p) < O for all

0 < p < 1 and hence [|v|| = infocp<1 f(p) = f(1) = >, cz7(n).
If v is opulent, then f'(0) = > .glogy(n) > 0. It follows that f'(p) > 0 for all 0 < p < 1 and

hence [|y[| = info<p<1 f(p) = f(1) = [S].
Otherwise, f(0) <0 < f(1) and hence there is a unique p for which 0 = f'(p) = _,,c7. ()0 V()" log ¥(n)
and hence for which «y is p-comfortable. Then for this value of p, ||v|| = f(p) = >_,cz v(n)P. O

We will give yet another alternate characterisation of |||, if v has finite support. Recall that
the entropy function H(yi,...,yy) for positive numbers vy, ..., y, summing to 1 is defined to be

H(y1,...,yn) = —(y110goy1 + ... yn logy Yn).

Lemma 20. Suppose v is a fractional dilate with finite support S = {s1,...,8,}. Then

Il = e 2500 min(1, 5 (s1)" - y(sn)")

Proof. Tt is clear that for real z and 0 < p < 1, that min(0,z) < pz and further that equality
happens exactly when:

1. p=0and z >0
2.p=land 2 <0
3. 0<p<landz=0.

Gibbs Inequality[GibbsInequality| states that

H(y17'-'7yn> S_ZyzlogQZZ

for any sequence of non-negative z; summing to 1 with equality only if y; = z; for all 4.

For now fix 0 < p <1 and let z; = Zj(’jzf)”' Clearly > z; = 1.
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Then for all non-negative sequences y; with y; +... +y, =1

H(yr, . yn) +min(0, > y;loga¥(s:)) < H(yr, - yn) + Y pyilogs v(s:)

K3 2

= H(y1,,yn) + Y tilogy 7(s:)?

1

= H(ys, . yn) + Y _ vilogy z +logs > y(s:)"
7 7

S 10g2 Z f)/(si)p7
i

with the second inequality being Gibbs Inequality.
Raising 2 to both sides shows that

2HW1¥n) min (1, y(s;:)Y" ... v(s5)¥") < Z'y(si)p

for all y1,...,y, and all 0 < p < 1. Equality here only happens if equality happens in both the
inequalities above, which is if min(0, ), y;logy v(s:)) = >, pyilogs ¥(s;) and if y; = 2; for all 4.

To put it another way, max,, 4y, —1 27@W¥2) min(1,y(s1)¥" ... y(sn)¥") is bounded above
by >, v(s;)P with equality only if . pz;logy v(s;) = min(0, >, z;logy ¥(s;)) where z; = %,
which is equivalent to the requirement that

p Z 7(s:)"logy(s:) = min(0, Z (si)" log y(si))-

K3 2

As discussed above, equality happens exactly when

1. p=0and 0 <) logv(s;), which is the requirement for v to be opulent

2. p=1and 0> ) ,7(s;)logv(s;), which is the requirement for v to be spartan

3. 0<p<1land) , v(s;)Plogvy(s;) = 0, which is the requirement that v to be p-comfortable.

Putting this all together, we see that

> nez (n) if v is spartan,

mex 2H WL n) min (1, y(s1)"" ... y(sp)Y" = {n :n € Z,~(n) # 0}| if 7 is opulent,
Yyir...tYn=

Y nez V()P if v is p-comfortable.
Comparing with Theorem 4, it is clear that this is equal to ||| O

A fractional set is a fractional dilate « for which a(n) < 1 for all n € Z. It is clear that for
0<p<1, a(n)? > an) for all n € Z for a fractional set «, and hence |a| = >, ., a(n). (It
also follows trivially from Theorem 4 since fractional sets are clearly spartan.) Given a fractional
set «, let us say that a random set S, C Z" is drawn from a" if each element of Z" is chosen
independently, and the probability that (i1,i9,...,14,) is selected is a(i1)a(iz) . .. aliy).

In this section we will consider two fractional sets o and 8 and let S,,,T;, € Z" be independently
drawn from o” and " respectively, and will show that lim, . (E|S, + T|)/" = ||a + 8|| where
o + 3 denotes the fractional dilate defined by (a + 8)(n) = >_,,;_, a(i)8(j). We will henceforth
denote o + 8 by . Further if 7 is spartan (in which case ||| = ||«|||B8]]), we prove that |S,, + T,
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is highly likely to be very close to this bound. In the next section we consider sums and dilates of
a set with itself.

When proving that ||y]| is a lower bound for the limit, we will need the following technical
lemma.

Lemma 21. Let us suppose that (X,,)>2, is a collection of random variables, each of which can be
written as the sum of independent Bernoulli random variables and suppose that limnﬁoo(EXn)l/"
exists and is equal to t. Then lim, . Pr(X, > 0)Y/" also exists and is equal to min(1,t).

Proof. We claim that if X is a random variable which can be written as the sum of independent

Bernoulli random variables then EX — @ < Pr(X > 0). Indeed, write X =)
1 is Bernoulli, then

EX) =3 "E(ZZ)>2 Y  E(ZZ)= 2E(()2()),

icS jes i€S,jES i>]

ics Zi where each

so EX — (E§)2 <E(X — ()2()) < Elxsg = Pr(X = 0), the last inequality being because n — (3) <

1,,>0 for all n.
Now if ¢ < 1, then since EX,, — Pr(X,, > 0) < (EX,,)?/2, it follows that

lim su - 1/n : (EXn)2 1/n _ 42

p(EX, — Pr(X, > 0))/" < limsup( )yt =t
n—oo n—oo 2

and hence Pr X, > 0 is the difference between EX,, (which is asymptotically ¢") and EX,, — Pr X,,

(which is asymptotically #>"). Since t < 1, it follows that (Pr X,,)"/™ — t.

Given any u < 1, we can find a collection of random variables Y, satisfying the conditions
of the Lemma and with lim(EY;,)"/” = u and Pr(X, > 0) > Pr(Y, > 0) (simply reduce the
probabilities of the underlying independent Bernoulli random variables being 1 until we get the
required expectation). Then u = lim,,_,o Pr(Y, > 0)1/" < liminf, o Pr(X, > 0)1/”. Since this is
true for all u < 1, lim,,_,o, Pr(X,, > 0)1/” =1. O

Let us first prove the upper bound of the two-set part of Theorem 5. Recall that the multiplicity
Mult 44 %.5(z) is defined to be the number of ways of writing x = y + kz where y € A and z € B.

Theorem 22. Let « and B be fractional sets, and suppose Sy, T, C Z" are drawn from o™ and 5"
respectively and let v = a + 5. Then

E’Sn + Tn| < ||'Y”n

Proof. Let X be the support of v. Then the possible elements of S, + T}, are the elements of
X™ Given a particular element z € X", the probability that x € S, + T, is the probabil-
ity that Mults, 17, (z) > 0, which is bounded above by min(1,E Multg, 7, (z)) and hence by
(E Multg, 47, (x))P for all 0 < p < 1.

Now if the coefficients of x are x = (x1,...,x) € 2", the expected value of the multiplicity of
rin S, + T, is

E MUItSn+Tn (-’B) = Zzl—l-yl:a:l,..,,zn—l—yn:wna(zl) s a(zn)ﬁ(yl) s B(yn)
= (Ez1+y1=x1a(zl)ﬁ(yl)) s (Eszryn::JcnO‘(Zn)ﬁ(yn))
=v(@)v(@2) . (@)
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It follows that the expected size of S, + T;, is at most

ESy+Tnl = Y Pr(z € Sy+Ty)
reEX™
< ) (B Multg, 4, (x))
reXn
= > @)y ()
(xl,...,l'k)EX"

= (3 @)

zeX

forall0 <p< 1.
Since ||v|| = infocp<1 Y, v(x)P, the result follows. O

As a step towards the equivalent lower bound, we will use Lemma 21 to calculate the asymptotic
behaviour of the probability of vectors lying in S,, + T5,.

Corollary 23. Let o and 8 be fractional sets, and suppose Sp,T,, C Z" are drawn from o™ and
B™ respectively and let v = a4+ . Suppose also that x1,...,xN are integers, that yi,...,yN are
non-negative numbers summing to 1 and that for each n we have non-negative integers 21 n, ..., 2Nn
summing to n such that for each i, limy_yo0 2zin/n = y;i. Let t = y(x1)V" ... y(xN)¥N.
Suppose finally that for each n, vy, is an n-dimensional vector such that z;, of the coordinates
are equal to x;. Then
limp—00 Pr(v, € A, + Bn)l/n = min(1,t).

Proof. Let vector X;,, = Multa, 1 g, (vn). As in the proof of Theorem 19,

EXn = (@)t ()™ oy (en) ™,

50 limy, 00 (EX,,) Y™ — t.

Furthermore X, can be written as ) 7. 1.cA, v,—2¢B,, which are independent Bernoulli ran-
dom variables. The result therefore follows from applying Lemma 21 to the random variables
Xn. O

Corollary 24. Let o and 8 be fractional sets with finite support, and suppose S, T, C Z"™ are
drawn from o™ and ™ respectively and let v = a + .
Then limy, o0 E|S,, + T Y™ = |||

Proof. By Lemma 20, if S = {s1,...,sy} is the support of v, there exist non-negative numbers
Y1, .., YN summing to 1 with

Iyl = 9H (Y1, yN) min(1,7(s1)¥" ... y(sn)¥N).

Then we can choose integers z; + ...+ zy = n with z;/n — y; for each 1 < i < N. There

are (Zl 22” ZN) n-dimensional vectors with z; of each coordinate i; and they all have the same
1/

probability p, of being in A, + By, and by Lemma 23, p;/" — min(1,¢* ...c/V).

YA
It is well known that (31 22" zN)l/” —y 9H(y1,9n)
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It follows that

n—oo

liminf E|A,, + Bnll/" > lim (( " )pn)l/n
n—oo 21, %2, -y AN

= 2Hyzevn) min (1, 4(i1)Y . .. y(in) YY)

= [l
By Theorem 22, it follows that the limit of E|A, + B,|"/" exists and is equal to ||]|. O

Corollary 25. Let o and B be fractional sets with finite support, and suppose Sy, T, C Z"™ are
drawn from o™ and B™ respectively and let v = a+ 3. Suppose that 7 is spartan (so ||v|| = ||c|||5]]-)

Then E|Sy||Tn| — |Sn + Tn| = o(|Sn||Tw|), so the probability that | S, + Ty| is at least 0.99|v||™
tends to 1 as n tends to infinity.

Proof. As in the Proof of Lemma 21, we claim that if X is a random variable which can be written
2
as the sum of independent Bernoulli random variables then EX — @ < Pr(X > 0). In particular,

for all v, Multg, 47, (v) can be written in such a fashion, so
EMultg, 7, (v) — Pr(Multg, .7, (v) > 0) < (EMultg, 17, (v))?*/2 < (EMults, 17, (v))*
Since it is clear that the left hand side is also at most EMultg, 47, (v), it follows that
EMultg, +7, (v) — Pr(Multg, +7, (v) > 0) < (EMultg, 47, (v))P for all 1 < p < 2.

Then E|S,||Tn| — |Sn + Ty| is the sum over all v of the expected value of E Multg, 47, (v) —
Pr(Multg, 7, (v) > 0), which is at most the sum over all v of E(Multg, +7, (v))P for all 1 < p < 2.

If vis (v1,...,v,) then E(Multg, 17, (v)) = v(v1) ... v(vpn).
It follows that

E[Sp[|Tn| = |Sn + Tn| < Z ()P .y (vn)P = (Z v(v)P)"

V1,V2,..-,Un

forall 1 <p<2.

Since v is spartan, the function p — Y, ~(v)? is decreasing for all p < 1 and beyond, so for all
€ >0, >, ()¢ < ||v]|. Thus there exists € such that E|S,||T,| — |Sn + Tn| < (||7]| — €)™ for all
n. O

5 The rainbow connection

Let a be a fractional set and let p be a non-zero integer. Let v := a + p - o denote the fractional
dilate defined by y(n) = >_,, ., a(i)a(j). In this section we will show that if S, is a random set

1/n

drawn from o” then lim, o (E|S,, + p - Sn|)* /"™ is max(||a|, [|v]])-

First let us deal with the easy case.

Lemma 26. If ||| < 1 then limy, .o (E[S, + p - Sp|)/" = |la|. On the other hand, if || > 1,
then [|v]| > [l«]-

Proof. Clearly E|S,+p-Sy,| > E|S,| = ||a|®. Further, E|S,+p-S,| < E|S,|? = (E|S,|)?+ Var|S,| <
(E|Sn])? + E|Su| = o] + [|ce]|™
Thus if |Jof < 1 then lim, o0 (E[Sy, +p - Su)/" = ||]|.
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Let S,, be drawn from a”. |S,| can be written as the sum of independent Bernoulli random
variables and lim,, o0 (E|S,[)/" = ||a|| > 1. Thus by Lemma 21, lim,, o Pr(|S,| > 0)'/" = 1.

Let T, be independently drawn from o™. By Corollary 24, ||v|| = limy—eo(E[S, + p - Ty)
but |Sy, + p - Tp| > |Tn| whenever S, is non-empty, so [Sp + p - Tn| > [T0|1}g, 0. Since [S,| and
|T,,| are independent, it follows that E|S,, + p - T;,| > E|T},| Pr(|S,| > 0), whence

1/n
)

Il = lim (IS, +Tu))"/" > lim (B|T| Pr(Sa] > 0)'/" = |a.

O

In the ||| > 1 case we will prove that lim,_,(E|S, + p - Sn|)}/™ = ||7|| by comparing the size

of S, +p- S, with S,, + p - T;,, where T, is a random set drawn from a" independently from .S,.
Let us say that a vector v € Z" is rainbow if it has at least one copy of each coefficient from the
support {z1,...,x} of v, and let R,, denote the set of rainbow vectors in Z".

Theorem 27. If p # 1 and v is a rainbow vector, the probabilities that v € S, + p - S, and
v €S, +p-T, are the same. Hence E|(S, +p-Sn) N Ry| =E|(Sp +p-Tn) N Ryl

Proof. There are a finite number of = such that Pr(x € S,,v — pzr € S,,) > 0. Let us denote the
set of all such = by S.

We claim that there exist distinct a, b in the support of o such that a + pb cannot be expressed
in any other way as a’ + pb’ where a’ and b’ are in the support of a. Indeed if p < 0, let a and b be
the largest and smallest elements, respectively, of the support of a. If @’ and ¥’ are any elements of
the support of a, then a > a’ and b < V', so a+ pb > a’ + pb’ with equality only if a = @’ and b = b'.
Similarly, if p > 1, we can take a and b to be the second-largest and largest elements, respectively,
of the support of a. If @’ and V' are any elements of the support of o with a’ + pb’ = a + pb but
with @’ # a and b’ # b, it must follow that b’ < b (as b is the largest element), whence b’ < a and
hence a’ +pb/ <b+pa <b+pa+ (p—1)(b—a) = a+ kb, forming a contradiction.

Now since v is a rainbow vector, it contains a coordinate equal to a + kb, say v; = a + kb. Then
it follows that for all z € S, z; = a and (v — px); = b, and therefore for all x € S, v —px ¢ S (as
a #b).

In particular for each x € S, z # v — px and so the events x € S, and v — pxr € S, are
independent, and hence Pr(z € S,,v —pzx € S,,) = Pr(z € S,,) Pr(v —px € S,,). Furthermore, since
the sets {x,v — px} for all x € S are disjoint, these events are all independent, so

Pr(ve S, + S, =1- H(l —Pr(z € S,,v—pxr€s,))

TES

=1- H(l —Pr(z € S,)Pr(v—px € S,))
zes

=1- H(l —Pr(z € S,)Pr(v—px eTy))
zes

=1- H(l—Pr(ac € Sp,v—pxr €Ty,))
zes

=Pr(vesS,+1T,).

Since E|(Sy,, + p - Sn) N Ry| is the sum of Pr(v € S, + p - Sy,) over all rainbow v, the equality of
expectations follows. ]

This gives us a good bound on the size of E|S,, + p- S, | because it usually happens that all but
exponentially few of the elements of S,, + p - T}, are rainbow.
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Theorem 28. There exists an € > 0 such that the expected size of E|(Sy+p-T)\Rn| = o((||7]|—€)™).

Proof. Let p € [0,1] be such that ||v[| =3, (,)27(2)?, and let oo = min{7(2) : 7(2) # 0}.

Let z be any value with v(z) # 0. By a similar argument to Theorem 22, for all 0 < ¢ < 1, the
expected number of elements of Sy, +p-T;, with no coefficient equal to z is at most (3_,, ., v(w)?)".
In particular, taking ¢ = p, it is at most (||y| — o).

If there are N elements of the support of 7, E|(S,,+p-T},)\ R, | is therefore at most N(||v]|—a?)™,
which is o((||y]| — €)™ for any € < aP. O

Corollary 29. If ||of| > 1 and p # 1, then lim, oo E[S, +p - Su|Y™ = |la +p - a|. Furthermore,
if a4+ p -« is spartan, E|S,|? — |Sn 4+ p - Sn| = o(E|S,|?).
Proof. By Theorem 22, E|S,, +p-Sy| < |la+p - af".
Further, by Theorem 27,
E[Sn +p - Sul 2 E[(Sh +p - Sp) N Ryl
=E[(Sn +p-Tn) N Ryl
=E[Sy +p-Tn| —E|(Sp +p-Tn) \ Ral.

By Corollary 24, lim,, o0 E|S,,+p-T,,|"/" — |Ja+p-a|| and by Theorem 28, E|(S,,4+p-Ty)\ Rn| =
o((ao + p - a| — €)™), so it follows that liminf, ..o E[S, + p - Sp|'/™ > |lo + p - | and hence
limy, o0 E|Sy, +p- S|/ = |la +p- af|.

Further, if o + p - « is spartan, E|S,|> — |S, + p - Sp| can be expressed as:

E[Sp|* = Sn +p - Sn| = E|Su|* - (E|Sy|)? (1)

+ (E[Snl)* = E| S| |To| (2)

+ E[Sp[|Tnl = [Sn +p - Tl (3)

+E|[(Sh +p-Ta) \ Ryl (4)

+E|(Sn +p-Tn) N Ryl — E[(Sh +p- Sp) N Ry (5)

—E[(Sn +p - Sn) \ Rul. (6)

The first line is Var|S,| which (since S, is the sum of independent Bernoulli variables) is at

most E|S,,| = o(E|S,|?). The second is clearly 0. The third is o(E|S,|?) by Corollary 25, the fourth
and sixth by Theorem 28 and the fifth is zero by Theorem 27. O

Theorem 30. If v is a rainbow vector, the probabilities that v € S, +-S,, and v € S, +< T}, are
the same and hence E|(Sy, 4+ Sn) N Ry| = E|(Sn, += ) N Ry

Proof. Similar to Theorem 27, the expectation follows directly from the probability. Also, since
v is rainbow, v/2 is not in the support of a. There are a finite number of x such that Pr(z €
Sp,v —x € 8,) > 0. Let us denote the set of all such = by S.

Thus

Pr(ve S, + Sp) =Pr(3z:z € S,z € Sy,v—z€S,)
=Pr(3z:zx e S,z e S,v—reS,,z<(v—1x))

=1—- J] @-Pr@eS,)Prv—zeS,))
r:x€S,x<(v—2x)
=1— H (1-Pr(xeS,)Pr(v—zeT,))

z:z€S,x<(v—1)
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Corollary 31. If || > 1, then lim,,_so0 E|S, +S,|"/" = ||a+al|. Furthermore, if a+a is spartan,
2
B — |8+ Sl = o(E|S0 )

Proof. By Theorem 22, E|S,, + S,,| < || + ™.
Further, by Theorem 30,

E[Sp + Sl = E|(Sn + Sn) N Ry
=E|(Sn += T) N R,
=E|S, += T,,| — E[(S, += T),) \ R,|.
Now S, + T, = (Sp, +< T,) U (T, +< S;,) and these two sets have the same distribution, so

E|S,+<Ty| > 1E|S,+T,|. Thus by Corollary 24 and Theorem 28, lim,, E|S,+S, " = ||a+al.
Furthermore,

= E|(Sn += Tn) U R + of[|o*")
= E|(Sn += Tn)| + of||o*")

1
> JEISy + Tl + of o>
1
= SEISu[EIT,| + of o™
1
= SEISA[EIS | + of ™)
1 1 1
= SEISuf? + SVar|Su| + oflal|*") = SEISu[* + of ™)

Since clearly | S, + Sn| < 3(|Sn|* + |S,|) it follows that E[S,, + Sn| < 3E[S,[2 + o(||a[[*"), so we
are done. O

6 Ruzsa’s Method and Hennecart, Robert and Yudin’s Construc-
tion

In [10], Ruzsa constructs sets by taking a fixed probability 0 < ¢ < 1 and a finite set S and selecting
subsets of Z" by taking each element of S™ independently with probability ¢". In our terminology,
this is the same as drawing from o™ where « is the fractional dilate equal to ¢lg.

Let us suppose that there are M elements of S and N elements of S+ k- S. Let us label the
elements of S+ k- S as {z1,...,zn}. For 1 <i < N, let us write \; for the number of ways of
writing x; as s1 + ksy where s1,s9 € S. We say \; is the multiplicity of z; and say the unordered
set {1, Ag,..., An} is the multiplicity spectrum of S + k- S. Note that sz\il N\; = M?. Tt is clear
that
Oifz ¢ S+Ek-S,

@\ if ¢ = ;.

oz—l—k:-a(:z‘):{
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Then we can rewrite the results of Theorem 4 as
Aj
<qM>2 if ¢ < 1/1, Am,

AP
. > >V
P3N if ¢ =1/ T A

Before proceeding into the Hennecart, Robert and Yudin construction, we first give an easier
example of the addition and subtraction of the set {0, 1, 3}.

Claim 32. For all € > 0, there exists a set S with |S — S| > |S|>7¢ and |S + S| < |S|}-9364Fe,

Proof. Let S ={0,1,3} and let % < ¢ < 1 be some fixed probability, and let .S,, be a random subset
of S™ chosen by choosing each element of S with probability ¢".
Then S+ S = {0,2,6,1,3,4} with corresponding multiplicities {1,1,1,2,2,2}. As such, the
limit of E|S,, + S,|'/" as n — oo is
1k
(3¢)*if ¢ < 5°
1
la+all={6ifq>1*

2P

3¢% (14 2P) if g = 120727,

On the other hand S—S = {-3, -2, 1,0, 1, 2, 3} with corresponding multiplicities {1,1,1,3,1,1,1},
and so the limit of E|S, — S,|/" as n — oo is

1

(3q)%if g < 3
o — o = 7ﬁq>1W

3P

q*P(6+3P) if ¢ = %W

-

Now 3% = 81 > 64 = 26 so it follows that %i > %% Thus if we take ¢ just below 24, it will
follow that ||a + a|| = 6 and |Ja — | = (3¢)%.

Furthermore, since a—a will be spartan, it will actually follow that E|S,|?>—|S,—S,| = o((3¢)*"),
so we get a set S, for which |S,,| is very close to (3q)™, |S,, — Sy | is very close to (3¢)*" and |S,, + Sy|
is at most 6. g 6

Thus, for any € we find a set S with |S — S| > |S|>~¢ and |S + S| < |S|==3 ¢, where ¢ can be

1
chosen arbitrarily close to %4, SO 1?536(1 can be less than 1.93647. O

In a 1999 paper [3], Hennecart, Robert and Yudin gave a construction of sets Ay 4 € 74 for
which |Ay g — Ay q| was a lot bigger than [Ay g + Ak 4| Their construction was

Ak,d = {(xl,. . .,xd_H) . 0 S LlyeeeyLd41,T1 —+ ... —|-l‘d+1 = k:}
A standard textbook argument gives that |Ay 4| = (kj;d). It turns out that the multiplicity

spectrum for subtraction on Ay 4 is particularly easy to describe:

Theorem 33. The multiplicity spectrum for subtraction on Ay q consists of 1 copy of (k+d) and,

for 1< 6 < ST (1) () (57 copies of (4747

(2
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Proof. Let w = (w1, ..., w4+1) be an element of A g — A 4. Then w can be written as w =z —y
where x = (21,...,24+1) and y = (y1,...,y4+1) are non-negative vectors summing to k. It follows
clearly that >, w; = 0.

Now write w™ as the vector containing only the positive coordinates of w, so

wt = (max(wy,0), ..., max(wg,1,0))

and write w™ for the corresponding vector for the negative coordinates. Then for all i, max(w;, 0) <
i, SO Zz(w+)l < k.

Now if w is any integer vector with ), w; = 0 it is clear for non-negative vectors z,y that
w = x — y if and only if there is a non-negative vector z such that r = w™ +zand y =2z —w™.

Thus the number of ways that w can be written as an element of Ay 4 — Ay, 4 is the number of
non-negative d + 1-dimensional vectors summing to k — Y_.(w™); which is (kle'(sﬂr)ﬁd).

Now to calculate the number of d+ 1-length integer vectors summing to 0 such that the positive
elements sum to k£ > 0, we split according to the number i of positive elements (which must be in
the range 1 < i < min(k,d)). The number of choices of the locations of those ¢ positive elements is

(d'z.H), the number of ¢ positive numbers adding to & is (1::11) and the number of d+1—i non-negative

numbers adding to £ is (k:ﬁ;l) O

This allows us to prove Theorem 6, namely that there exists a fractional set « for which ||« > 1,
a — a is spartan, and with ||a + o < |laf/*73%4.

Proof of Theorem 6. Our a will be ql4, ,, where 0 < ¢ < 1 is a probability that we will specify
later.
For 0 <t <k, let \y = (k+fll*t) and let pp = 1 and for ¢t > 0,

=2 (D)

Then from Theorem 33, we know that the non-0 values of o — o consist of p; copies of ¢2)\; for
each 0 <t <k.
Then a — « is spartan, by definition, when

0> Z a — a(x)logy a — o)
TEZ4H a—a(w)#0
k
0> Z pq* A 1ogs (> M)
t=0
k k
= mAdoga(\) > Y puAilogy(d?)
t=0 t=0
k
Al A
~ azotehilogaM) o o)

-~ Zf:o kiAg loga(Ag)

2 20 meh > q.

_ Zf:o K¢ loga (N)

So let p =2 2Tiom | o — o is spartan for all p > q.
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Now |la + of < |Akq + Akdl = (2k;rd). Note that we believe o + « is opulent, so we have

equality here, but we do not need that for this proof.

So if we let 5 = log((Qk;d))/log(p]SD, it follows that ||a + | < ||a|/.

[ as a function of d and k seems to have a global minimum of o = 1.735383... at d = 14929
and k = 987. O

7 Open Questions

We introduced the concept of a fractional dilate as a more general version of Ruzsa’s method from
[10], Ruzsa’s method being the specialisation where a fractional dilate has all non-0 values being
equal. However, we in fact only used this same specialisation to prove Theorem 6. We believe that
using a more general fractional dilate defined on the Hennecart, Robert and Yudin sets Ay, 4 could
give a better bound than 1.7354. In particular, the best bound you can get from a Ruzsa-style

1 46 1129
dilate on Ay 4 is that for d = 23, which with a value of ¢ = %300 1%25 % 15000 oives a bound of 1.7897,

whereas if you take a fractional dilate on As 29 with a value of apzproximately 0.9951 on the elements
of the form 2e; and approximately 0.7617 on the elements of the form e; + e; you can instead get
a bound of 1.7889.

Our proof of Theorem 6 relies on the fact that if .S,, is drawn from " and o — « is spartan,
then the size of S, — S, is quite clumped around the expected value. We believe this will be true

without the requirement of spartaneity.

Conjecture 34. If « is a fractional dilate with ||| > 1 and k is a positive integer and Ay, is drawn
from o™ then

lim 128HAn TR Anl kg
n—o00 n
This would directly imply that various results for sizes of sums and differences of sets also hold
for fractional dilates - for example Rusza’s Triangle Inequality would imply that |a/||5 — v <
o — Bl|lec — 7| for fractional dilates a, 3,~.
A weaker conjecture we make is that the feasible regions for dilates are the same as the feasible

regions for fractional dilates.

Conjecture 35. For any fractional dilate o, any positive integer N and any € > 0, there exists a
finite subset S of the integers such that for all |k| < N,

We also ask whether the fractional dilate versions of the open questions from Section 3 are true.
Since we know that many readers 1just jump straight to the open questions section to see if there
will be anything interesting for them to work on, we write out these questions in full, noting that
Theorem 4 gives a useful way of computing ||a + af| and [ja 4+ 2 - «f|.

logla+k-af log|S+k-S|
log||a| log S|

| <e

Question 36. Suppose that « : Z — [0,1] is a function with finite sum. We write

lafl = > a(d)

7

latall = inf > (> alalk))”

0<p<l &~ " )
i j+k=i
2.a| = inf : P,
fa+2-al = inf 3 a(a(k)
i j+2k=i
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1.
2.
3.

Are each of the following statements true for all such o?

ldllloe + 2 afl < flov+ o2
lor+2- o] < logg 4f|a + e

lo+2-af > [la+af

Since a subset of the integers is equivalent to the fractional dilate of its characteristic function,

positive answers to these questions would imply positive answers to the corresponding questions
in Section 3. If either Conjecture 34 or Conjecture 35 is true the questions in the two sections are
equivalent. A negative answer to any of these questions would either lead to an extension of the
Feasible Region Fi 2 or a better understanding of the above Conjectures.

The biggest open question we leave is whether fractional dilates can find a use elsewhere.
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