
Ramsey’s Theorem

There are many versions of Ramsey’s theorem. Perhaps the simplest is the following. Let
N = {1, 2, . . .} be the set of natural numbers, and, for a set A ⊂ N, let A2 denote the set of
unordered pairs of members of A. We will abuse notation slightly and write, for instance,
A2 = {12, 13, 23} if A = {1, 2, 3}. A finite coloring of a set A is technically a map from A
to some finite set of colors, but we will think of it as simply a coloring of the elements of
A; an r-coloring is a coloring in which (potentially) r colors are used. Finally, a coloring
of a set A is monochromatic on B ⊂ A if every b ∈ B receives the same color. Ramsey’s
theorem states the following.

Theorem 1. A 2-coloring of N2 contains an infinite set A such that A2 is monochromatic.

Proof. Consider a given 2-coloring of N2, with colors red and blue, say, and choose a1 ∈ N.
There are infinitely many pairs a1b, each colored either red or blue, so there must be an
infinite set B1 such that the color of each a1b1 (for b1 ∈ B1) is the same – red, say. Choose
a2 ∈ B1. There are infinitely many pairs a2b, for b ∈ B1, and each is colored either red or
blue, so there must be an infinite set B2 ⊂ B1 such that the color of each a2b2 (for b2 ∈ B2)
is the same – blue, say. Continue. We obtain an infinite set A′ = {a1, a2, . . .} in which the
color of aiaj, where i < j, depends only on i: call that color ci. Each ci is either red or
blue, so there must be a subsequence cij such that all the cij are the same color, say blue.
But then A = {ai1 , ai2 , . . .} is our desired monochromatic set.

There are many ways to generalize this theorem. One is to increase the number of colors
from 2 to r. An identical conclusion holds, and the same proof works. One can also deduce
the r-color version directly from Theorem 1, by grouping the colors. Specifically, given a
3-coloring of N2 with colors red, blue and green, recolor everything colored either red or
blue with color purple. Now there are only two colors, purple and green, so we can apply
Theorem 1 to get an infinite B ⊂ N with B2 monochromatic. If B2 is green, we are done.
If B2 is purple (i.e., a red/blue mix), we just apply Theorem 1 again, with the original
colors red and blue, to get A ⊂ B with A2 monochromatic. The extension to r colors uses
the same idea.
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A more sophisticated generalization involves coloring the k-sets of N (i.e., the subsets
of N of size k). Write Ak for the set of subsets of A of size k, and write, for instance,
A3 = {123, 124, 134, 234} if A = {1, 2, 3, 4}. Here is the generalization.

Theorem 2. A 2-coloring of Nk contains an infinite set A such that Ak is monochromatic.

Proof. We modify the proof of Theorem 1. The main new idea is to use induction on k,
and to apply the induction hypothesis at each step. The case k = 1 is just the “infinite
pigeonhole principle”, and the case k = 2 is Theorem 1.
Consider then a given 2-coloring of Nk, with colors red and blue, say, and choose a1 ∈ N.
There are infinitely many k-sets {a1}∪X, with |X| = k−1, each colored either red or blue,
so, by induction, there must be an infinite set B1 such that the color of each {a1} ∪ X1

(for X1 ∈ Bk−1
1 ) is the same – red, say. Choose a2 ∈ B1. There are infinitely many k-sets

{a2} ∪ X, for X ∈ Bk−1
1 , and each is colored either red or blue, so, by induction, there

must be an infinite set B2 ⊂ B1 such that the color of each {a2} ∪ X2 (for X2 ∈ Bk−1
2 )

is the same – blue, say. Continue. We obtain an infinite set A′ = {a1, a2, . . .} in which
the color of ai1ai2 · · · aik , where i1 < i2 < · · · < ik, depends only on i = i1: call that color
ci. The rest of the proof is the same as before: each ci is either red or blue, so there
must be a subsequence cij such that all the cij are the same color, say blue. But then
A = {ai1 , ai2 , . . .} is our desired monochromatic set.

There are finite versions of these theorems as well. Write [n] = {1, 2, . . . , n}. Then, for
all t, there exists an R(t) such that every 2-coloring of [R(t)]2 contains A with |A| =
t and A2 monochromatic. This can be proved using the ideas above, and it can also
be deduced directly from Theorem 1 by “compactness”. Compactness works like this:
suppose there is no R(t) such that every 2-coloring of [R(t)]2 contains A of size t with
A2 monochromatic. Then, for each n ≥ t, there is a 2-coloring χn of [n]2 without a
monochromatic A2 (where |A| = t). Now, list the elements of N2 in some order, say the
colexicographic order 12, 13, 23, 14, 24, 34, 15, 25, 35, 45, 16, . . .. Among the 2-colorings χn,
there is an infinite subsequence of colorings in which 12 always gets the same color – red,
say. Then, among the colorings in that subsequence, there is a sub-subsequence in which
13 always gets the same color – blue, say. We keep taking subsequences, obtaining in
the process a 2-coloring χ of N2 (in our example, χ(12) is red and χ(13) is blue). But
this coloring χ contradicts Theorem 1: it does not even contain a monochromatic A2 with
|A| = t.
Compactness is a useful technique; it allows us to deduce finite versions of Ramsey-theoretic
results from their infinite counterparts. It does not work in reverse.
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