Rado's Theorem

Suppose that S is a system of equations, with integer coefficients, in variables x_{1}, \ldots, x_{n}. S is said to be r-regular if any r-coloring of \mathbb{N} contains a monochromatic solution to $S . S$ is regular if it is r-regular for all r.
For instance, $x+y=z$ is regular - this is Schur's theorem. $x+y=2 z$ is also regular take $x=y=z$. How about $x+y=3 z$? It turns out that $x+y=n z$ is only regular for $n=1$ and 2 . This and more will follow from Rado's theorem.

Theorem 1. (Rado) Let c_{1}, \ldots, c_{n} be nonzero integers. Then the equation

$$
c_{1} x_{1}+\cdots+c_{n} x_{n}=0
$$

is regular if and only if some nonempty subset of the c_{i} sums to zero.
We require some preliminaries. The following theorem extends van der Waerden's theorem.
Theorem 2. For all positive integers k and r, there exists a least integer $n(k, r)$ such that, for any r-coloring of $[n(k, r)]$, there exist integers a and d such that the set $\{a, a+d, \ldots, a+$ $k d\} \cup\{d\}$ (i.e., a $(k+1)$-term progression and its common difference) is monochromatic.

Proof. We use induction on r. The case $r=1$ is trivial; $n(k, 1)=k+1$. I claim that

$$
n(k, r) \leq W(k n(k, r-1)+1, r)
$$

Here is why: suppose we are given an r-coloring of $[N]=[W(k n+1, r)]$, where $n=n(k, r-$ 1). We first find a monochromatic (say, red) arithmetic progression $\{a, a+d, \ldots, a+k n d\}$. If any of the numbers $d, 2 d, \ldots, n d$ is red, we are done. (Specifically, if $j d$ is red, then the set $\{a, a+j d, \ldots, a+j k d\} \cup\{j d\}$ is all red.) If not, the set $\{d, 2 d, \ldots, n d\}$ is $r-1$-colored, in which case we are also done - by induction.

The same proof also yields the following.

Theorem 3. For all positive integers k, r and s, there exists a least integer $n(k, r, s)$ such that, for any r-coloring of $[n(k, r, s)]$, there exist integers a and d such that the set $\{a, a+d, \ldots, a+k d\} \cup\{s d\}$ (i.e., $a(k+1)$-term progression and s times its common difference) is monochromatic.

Next, we prove a special case of Rado's theorem.
Lemma 4. For all nonzero integers s and t, the equation $s x+t y=s z$ is regular.
Proof. We may assume that $s>0$. By possibly interchanging the roles of x and z, we may also assume that $t>0$. By the previous theorem, given any r-coloring of \mathbb{N}, we can find a and d such that $\{a, a+d, \ldots, a+t d\} \cup\{s d\}$ is monochromatic. Now just take $x=a, y=s d, z=a+t d$.

Proof of Rado's theorem. First we prove that the condition is sufficient. Suppose that, without loss of generality, $c_{1}+\cdots+c_{k}=0$. If $k=n$, we can just take $x_{1}=\cdots=x_{n}=1$. Suppose then that $k<n$. We set

$$
x_{i}= \begin{cases}x & \text { for } i=1 \\ z & \text { for } 2 \leq i \leq k \\ y & \text { for } i \geq k+1\end{cases}
$$

The equation now reduces to

$$
c_{1} x+\left(c_{2}+\cdots+c_{k}\right) z+\left(c_{k+1}+\cdots+c_{n}\right) y=0
$$

or, writing $s=c_{1}, t=c_{k+1}+\cdots+c_{n}$, and recalling that $c_{1}+\cdots+c_{k}=0$,

$$
s x+t y=s z
$$

which is regular by the lemma.
Next we prove that the condition is necessary. Choose a prime p satisfying $p>\sum\left|c_{i}\right|$. Color each natural number by the last nonzero digit in its base p expansion; this yields a ($p-1$)-coloring of \mathbb{N}. For instance, if $p=5$, we color the numbers 100,101 and 105 with colors 4,1 and 1 respectively. Suppose now that x_{1}, \ldots, x_{n} is a monochromatic solution to $\sum c_{i} x_{i}=0$. Let l be the largest integer such that $p^{l} \mid x_{i}$ for all i. By dividing through by p^{l} if necessary (note that this does not change the color of the x_{i}), we may assume that $l=0$; further, we may assume that $x_{1} \equiv \cdots \equiv x_{k} \equiv d(\bmod p)$ and $x_{k+1} \equiv \cdots \equiv x_{n} \equiv 0(\bmod p)$, where $1 \leq k \leq n$. Consequently,

$$
0 \equiv c_{1} x_{1}+\cdots+c_{n} x_{n} \equiv d\left(c_{1}+\cdots+c_{k}\right) \quad(\bmod p)
$$

and so

$$
c_{1}+\cdots+c_{k} \equiv 0 \quad(\bmod p),
$$

which is a contradiction, since $p>\sum\left|c_{i}\right|$.

Rado's theorem has a generalization to systems of equations. Suppose that S is a system of m equations (with integer coefficients) in n variables $x_{1}, \ldots, x_{n} . S$ can be written as $C \mathbf{x}=\mathbf{0}$ in the usual way, or as

$$
x_{1} \mathbf{c}_{\mathbf{1}}+\cdots+x_{n} \mathbf{c}_{\mathbf{n}}=\mathbf{0},
$$

where the $\mathbf{c}_{\mathbf{i}}$ are the columns of C. Then S (or, equivalently, C) is said to satisfy the columns condition if, for some partition $[n]=B_{1} \cup \cdots \cup B_{t}$,

- $\sum_{i \in B_{1}} \mathbf{c}_{\mathbf{i}}=\mathbf{0}$
- $\sum_{i \in B_{s}} \mathbf{c}_{\mathbf{i}} \in \operatorname{span}\left\{\mathbf{c}_{\mathbf{i}}: i \in B_{1} \cup \cdots \cup B_{s-1}\right\}$ for $2 \leq s \leq t$.

Theorem 5. (Rado) $C \mathbf{x}=\mathbf{0}$ is regular if and only if C satisfies the columns condition.
The proof follows similar lines to the case $m=1$ discussed above. The base p colorings just defined force the necessity of the columns condition. The sufficiency is proved by finding a monochromatic solution inside an appropriate " (m, p, c)-set", which is a generalization of the "arithmetic progression plus common difference" structure featured above.

