Rado's Theorem

Suppose that S is a system of equations, with integer coefficients, in variables x_1, \ldots, x_n . S is said to be *r*-regular if any *r*-coloring of \mathbb{N} contains a monochromatic solution to S. S is regular if it is *r*-regular for all *r*.

For instance, x + y = z is regular - this is Schur's theorem. x + y = 2z is also regular - take x = y = z. How about x + y = 3z? It turns out that x + y = nz is only regular for n = 1 and 2. This and more will follow from Rado's theorem.

Theorem 1. (Rado) Let c_1, \ldots, c_n be nonzero integers. Then the equation

$$c_1 x_1 + \dots + c_n x_n = 0$$

is regular if and only if some nonempty subset of the c_i sums to zero.

We require some preliminaries. The following theorem extends van der Waerden's theorem.

Theorem 2. For all positive integers k and r, there exists a least integer n(k,r) such that, for any r-coloring of [n(k,r)], there exist integers a and d such that the set $\{a, a+d, \ldots, a+kd\} \cup \{d\}$ (i.e., a (k+1)-term progression and its common difference) is monochromatic.

Proof. We use induction on r. The case r = 1 is trivial; n(k, 1) = k + 1. I claim that

$$n(k,r) \le W(kn(k,r-1)+1,r).$$

Here is why: suppose we are given an *r*-coloring of [N] = [W(kn+1,r)], where n = n(k, r-1). We first find a monochromatic (say, red) arithmetic progression $\{a, a+d, \ldots, a+knd\}$. If any of the numbers $d, 2d, \ldots, nd$ is red, we are done. (Specifically, if jd is red, then the set $\{a, a+jd, \ldots, a+jkd\} \cup \{jd\}$ is all red.) If not, the set $\{d, 2d, \ldots, nd\}$ is r-1-colored, in which case we are also done - by induction.

The same proof also yields the following.

Theorem 3. For all positive integers k, r and s, there exists a least integer n(k, r, s) such that, for any r-coloring of [n(k, r, s)], there exist integers a and d such that the set $\{a, a + d, \ldots, a + kd\} \cup \{sd\}$ (i.e., a (k + 1)-term progression and s times its common difference) is monochromatic.

Next, we prove a special case of Rado's theorem.

Lemma 4. For all nonzero integers s and t, the equation sx + ty = sz is regular.

Proof. We may assume that s > 0. By possibly interchanging the roles of x and z, we may also assume that t > 0. By the previous theorem, given any r-coloring of \mathbb{N} , we can find a and d such that $\{a, a + d, \ldots, a + td\} \cup \{sd\}$ is monochromatic. Now just take x = a, y = sd, z = a + td.

Proof of Rado's theorem. First we prove that the condition is sufficient. Suppose that, without loss of generality, $c_1 + \cdots + c_k = 0$. If k = n, we can just take $x_1 = \cdots = x_n = 1$. Suppose then that k < n. We set

$$x_i = \begin{cases} x & \text{for } i = 1\\ z & \text{for } 2 \le i \le k\\ y & \text{for } i \ge k+1. \end{cases}$$

The equation now reduces to

$$c_1x + (c_2 + \dots + c_k)z + (c_{k+1} + \dots + c_n)y = 0,$$

or, writing $s = c_1, t = c_{k+1} + \cdots + c_n$, and recalling that $c_1 + \cdots + c_k = 0$,

$$sx + ty = sz,$$

which is regular by the lemma.

Next we prove that the condition is necessary. Choose a prime p satisfying $p > \sum |c_i|$. Color each natural number by the last nonzero digit in its base p expansion; this yields a (p-1)-coloring of \mathbb{N} . For instance, if p = 5, we color the numbers 100, 101 and 105 with colors 4, 1 and 1 respectively. Suppose now that x_1, \ldots, x_n is a monochromatic solution to $\sum c_i x_i = 0$. Let l be the largest integer such that $p^l | x_i$ for all i. By dividing through by p^l if necessary (note that this does not change the color of the x_i), we may assume that l = 0; further, we may assume that $x_1 \equiv \cdots \equiv x_k \equiv d \pmod{p}$ and $x_{k+1} \equiv \cdots \equiv x_n \equiv 0 \pmod{p}$, where $1 \leq k \leq n$. Consequently,

$$0 \equiv c_1 x_1 + \dots + c_n x_n \equiv d(c_1 + \dots + c_k) \pmod{p},$$

and so

$$c_1 + \dots + c_k \equiv 0 \pmod{p},$$

which is a contradiction, since $p > \sum |c_i|$.

Rado's theorem has a generalization to systems of equations. Suppose that S is a system of m equations (with integer coefficients) in n variables x_1, \ldots, x_n . S can be written as $C\mathbf{x} = \mathbf{0}$ in the usual way, or as

$$x_1\mathbf{c_1} + \dots + x_n\mathbf{c_n} = \mathbf{0},$$

where the $\mathbf{c_i}$ are the columns of C. Then S (or, equivalently, C) is said to satisfy the *columns condition* if, for some partition $[n] = B_1 \cup \cdots \cup B_t$,

- $\sum_{i\in B_1} \mathbf{c_i} = \mathbf{0}$
- $\sum_{i \in B_s} \mathbf{c_i} \in \operatorname{span}{\mathbf{c_i} : i \in B_1 \cup \cdots \cup B_{s-1}}$ for $2 \le s \le t$.

Theorem 5. (Rado) $C\mathbf{x} = \mathbf{0}$ is regular if and only if C satisfies the columns condition.

The proof follows similar lines to the case m = 1 discussed above. The base p colorings just defined force the necessity of the columns condition. The sufficiency is proved by finding a monochromatic solution inside an appropriate "(m, p, c)-set", which is a generalization of the "arithmetic progression plus common difference" structure featured above.