
Sums, Differences and Dilates

Amites Sarkar

Western Washington University

9 January 2025

Joint work with Jon Cutler (Montclair State University)
and Luke Pebody

Amites Sarkar Sums, Differences and Dilates



Jon and Luke

Amites Sarkar Sums, Differences and Dilates



Recall that the sumset A+ A of a set A ⊂ Zd is defined as

A+ A = {a+ a′ : a, a′ ∈ A}.

For a given integer k, the dilate A+ k · A is defined as

A+ k · A = {a+ ka′ : a, a′ ∈ A}.

Note: A+ 2 · A (for example) is generally a strict subset of
3A = A+ A+ A, where each of the three summands can be
distinct.

Example: If A = {1, 2, 4}, then A+ 2 · A = {3, 4, 5, 6, 8, 9, 10, 12},
but A+ A+ A = {3, 4, 5, 6, 7, 8, 9, 10, 12}.

Amites Sarkar Sums, Differences and Dilates



Suppose A ⊂ Z has small doubling, so that |A+ A| ≤ K |A|, where
K is small. Then, from Plünnecke’s inequality,

|A+ 2 · A| ≤ |A+ A+ A| ≤ K 3|A|.

Bukh (2008): can the exponent 3 be improved?

Theorem (Hanson and Petridis 2021)

If A ⊂ Z and |A+ A| ≤ K |A|, then

|A+ 2 · A| ≤ K 2.95|A|.

Theorem (Hanson and Petridis 2021)

If A ⊂ Z and |A+ A| ≤ K |A|, then

|A+ 2 · A| ≤ (K |A|)4/3.

How do we make A+ 2 · A large, while keeping A+ A small?
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How do we make A+ 2 · A large, while keeping A+ A small?

Consider the hypercube:

Hn =

{
n−1∑
i=0

ai4
i : ai ∈ {0, 1}

}
,

that is, all integers from 0 to 1
3(4

n − 1) with only 0s and 1s in their
base-4 expansions. We have

|Hn| = 2n |Hn + Hn| = 3n |Hn + 2 · Hn| = 4n.

How good is this? For all n,

(
log |Hn + Hn|

log |Hn|
,
log |Hn + 2 · Hn|

log |Hn|

)
=

(
log 3

log 2
, 2

)
≈ (1.585, 2).
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How do we make A+ 2 · A large, while keeping A+ A small?

Fix α ∈
(
1
2 , 1

)
, and set k = ⌊αn⌋.

Consider the hypercube + interval An,k = Hn ∪ Ik , where

Hn =

{
n−1∑
i=0

ai4
i : ai ∈ {0, 1}

}
Ik =

{
0, 1, . . . ,

4(4k−1 − 1)

3

}
.

As n → ∞,

(
log |An,k + An,k |

log |An,k |
,
log |An,k + 2 · An,k |

log |An,k |

)
→

(
max

{
log 3

α log 4
,
1 + α

2α

}
,
1

α

)
.

How does this compare with the upper bounds of Hanson and Petridis?
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How does this compare with the upper bounds of Hanson and Petridis?

Definition

For fixed integers k and l , we define the feasible region Fk,l to be
the closure of the set Ek,l of attainable points

Ek,l =

{(
log |A+ k · A|

log |A|
,
log |A+ l · A|

log |A|

)}
,

as A ranges over finite sets of integers. Fk,l ⊂ [1, 2]2.

Proposition

For all nonzero k , l , the feasible region Fk,l is convex, and contains
the diagonal D = {(x , x) : 1 ≤ x ≤ 2}.
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E1,2 =
{(

log |A+A|
log |A| , log |A+2·A|

log |A|

)}
Purple = forbidden (by Plünnecke, Hanson and Petridis)

White = known to be feasible (ODC = hypercube + interval)

Green + blue = unknown (“triangles of sadness”)

Amites Sarkar Sums, Differences and Dilates



E1,2 =
{(

log |A+A|
log |A| , log |A+2·A|

log |A|

)}
Definition

A Sidon set A contains no nontrivial (a, b, c , d) ∈ A4 with a+ b = c + d .

Theorem

If A is a Sidon set with at least two elements, then |A+ 2 · A| > |A+ A|.
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E1,2 =
{(

log |A+A|
log |A| , log |A+2·A|

log |A|

)}
Theorem (1970s)

Suppose A and B are subsets of the hypercube {0, 1}n. Then

|A+ 2 · B| = |A||B| ≤ |A+ B|p,

where p = log 4/ log 3.

Line CE is precisely the feasible line in F1,2 for subsets of {0, 1}n.
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How about differences, i.e., A− A vs A+ A?

Theorem (Conway 1967)

If A = {0, 2, 3, 4, 7, 11, 12, 14}, then |A+ A| = 26 > 25 = |A− A|.

Theorem (Freiman and Pigarev 1973)

|A+ A|3/4 ≤ |A− A| ≤ |A+ A|4/3

Theorem (Ruzsa 1976, 1989)(
|A+ A|
|A|

) 1
2

≤ |A− A|
|A|

≤
(
|A+ A|
|A|

)2

The upper bound comes from taking B = C = −A in Ruzsa’s triangle inequality:

|A||B − C | ≤ |A − B||A − C |,

and the lower bound comes from taking B = C = −A in this inequality:

|A||B + C | ≤ |A + B||A + C |.
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E1,−1 =
{(

log |A+A|
log |A| , log |A−A|

log |A|

)}
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Observation

If A ⊂ Z with |A| = n, then

|A+ A| ≤ n(n + 1)

2
and |A− A| ≤ n2 − n + 1,

with equality in both cases precisely when A is a Sidon set.

Theorem (Ruzsa 1992)

For every large enough n, there is a set A with |A| = n,

|A+ A| ≤ n2−c and |A− A| ≥ n2 − n2−c ,

where c is a positive absolute constant, and a set B with |B| = n,

|B − B| ≤ n2−c′ and |B + B| ≥ 1
2n

2 − n2−c′ ,

where c ′ is a positive absolute constant.

So (2− c , 2) and (2, 2− c ′) are both feasible when k = 1 and l = −1.
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E1,−1 =
{(

log |A+A|
log |A| , log |A−A|

log |A|

)}
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Ruzsa’s method:

• Take S = {0, 1, 3}, so that |S + S | < |S − S |.

• Fix a probability 0 < q < 1.

• Choose each x ∈ Sd ⊂ Zd independently with probability qd .

• Project this set into Z using a suitable map ϕ of the form

ϕ(x1, . . . , xd) = λ1x1 + · · ·+ λdxd .
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E1,−1 =
{(

log |A+A|
log |A| , log |A−A|

log |A|

)}
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Definition (CPS)

A fractional dilate γ is a map γ : Z → R+ ∪ {0} with finite support
supp(γ). The size of a fractional dilate is

∥γ∥ = inf
0≤p≤1

∑
n∈supp(γ)

γ(n)p.

• If α is a fractional set (α(n) ≤ 1 for all n), then ∥α∥ =
∑

n∈Z α(n).

Definition (CPS)

For fractional sets α, β and an integer k , α+ k · β is the fractional dilate

(α+ k · β)(n) =
∑
(i,j)

i+kj=n

α(i)β(j).
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Definition (CPS)

Given a fractional set α, a random set Sn ⊆ Zn is drawn from αn if each
element (i1, i2, . . . , in) ∈ Zn is chosen independently with probability

α(i1)α(i2) · · ·α(in).

Ruzsa: α = q1{0,1,3}

Definition (CPS)

Let α be a fractional set with ∥α∥ > 1, and suppose Sn ⊆ Zn is drawn
from αn. Then

E|Sn| = ∥α∥n Var|Sn| ≤ ∥α∥n

and
lim

n→∞
(E|Sn + k · Sn|)1/n = ∥α+ k · α∥.
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Difference Body Inequality

If A ⊂ Rd is convex, V denotes volume, and

A − A = {a − b : a, b ∈ A},

then

2dV (A) ≤ V (A − A) ≤
(
2d

d

)
V (A).

• Lower bound comes from Brunn-Minkowski inequality; equality iff A is centrally symmetric

• Upper bound: Rogers-Shephard inequality (1957); equality iff A is a simplex
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Hennecart, Robert, Yudin Construction 1999

If
Ak,d = {(x1, . . . , xd+1) : x1, . . . , xd+1 ≥ 0, x1 + · · · + xd+1 = k},

then

|A| =
(
k + d

d

)
|A + A| =

(
2k + d

d

)
|A − A| =

min(d,k)∑
t=0

(
d

t

)2(k + d − t

d

)
.

If k = d/2, then
log |A + A|

log |A|
→

4 log 2

3 log 3 − 2 log 2
≈ 1.4520

and
log |A − A|

log |A|
→

4 log(1 +
√
2)

3 log 3 − 2 log 2
≈ 1.8463,

so that (1.4520, 1.8463) is feasible when k = 1 and l = −1.
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E1,−1 =
{(

log |A+A|
log |A| , log |A−A|

log |A|

)}
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Theorem (CPS)

There exists a fractional set α for which

∥α∥ > 1, ∥α− α∥ = ∥α∥2, ∥α+ α∥ ≤ ∥α∥1.7354.

Theorem (CPS)

For all ϵ > 0, there exists a finite A ⊂ Z such that

|A− A| ≥ |A|2−ϵ > 1 and |A+ A| ≤ |A|1.7354+ϵ.

So (1.7354, 2) is feasible for F1,−1.
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E1,−1 =
{(

log |A+A|
log |A| , log |A−A|

log |A|

)}
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Two open problems:

• Is there is a A ⊂ Z with |A+ A| > |A+ 2 · A|?

• Is there another use for fractional dilates?
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