Hindman's Theorem

For real numbers x_{1}, \ldots, x_{n}, we define $\operatorname{FS}\left(x_{1}, \ldots, x_{n}\right)$ to be the set of (nonempty) finite sums of the x_{i}, so that

$$
\operatorname{FS}\left(x_{1}, \ldots, x_{n}\right)=\left\{\sum_{i \in I} x_{i}: \emptyset \neq I \subset[n]\right\} .
$$

Hindman's theorem states the following
Theorem 1. Any finite coloring of the natural numbers contains an infinite set A such that $\mathrm{FS}(A)$ is monochromatic.

We will deduce this from an equivalent set theory version of the result. Let F be the set of finite nonempty subsets of \mathbb{N}. For $\emptyset \neq A \subset F, f(A)$ denotes the set of finite unions of members of A, excluding the empty union. A set $D \subset F$ is said to be a disjoint collection if D is infinite and its members are disjoint.

Theorem 2. For any finite partition of F into sets F_{1}, \ldots, F_{n}, there exists an i and a disjoint collection $D \subset F_{i}$ such that $f(D) \subset F_{i}$.

Theorem 1 follows easily from Theorem 2 by identifying a set $A \in F$ with the natural number $\sum_{i \in A} 2^{i-1}$. Specifically, a finite coloring of \mathbb{N} yields a finite coloring of F, which, by Theorem 2, yields a disjoint collection D such that $f(D)$ is monochromatic. Sets in D correspond to natural numbers, and finite unions of sets in D correspond to finite sums of those numbers. (Note that a partition of F into sets F_{1}, \ldots, F_{n} is just an n-coloring of F.)

The following definition is the key to the entire proof. If $A \subset F$ and D is a disjoint collection, we say that A is large for D if, for every disjoint collection $D^{\prime} \subset f(D), f\left(D^{\prime}\right) \cap$ $A \neq \emptyset$. For example, viewing \mathbb{N} as a disjoint collection of singletons, the set of even-sized subsets of \mathbb{N} is large for \mathbb{N}, but the set of odd-sized subsets is not.

The next two lemmas show that a large set "almost" survives partitioning.

Lemma 3. If A is large for D and $A=A_{1} \cup A_{2}$, there is a disjoint collection $D^{\prime} \subset f(D)$ such that either A_{1} or A_{2} is large for D^{\prime}.

Proof. Suppose not. Since A_{1} is not large for D, there is a disjoint collection $D^{\prime} \subset f(D)$ such that $f\left(D^{\prime}\right) \cap A_{1}=\emptyset$. Since A_{2} is not large for D^{\prime}, there is a disjoint collection $D^{\prime \prime} \subset f\left(D^{\prime}\right)$ such that $f\left(D^{\prime \prime}\right) \cap A_{2}=\emptyset$. Therefore $f\left(D^{\prime \prime}\right) \cap A=\emptyset$, contradicting the assumption that A is large for D.

Lemma 4. Suppose that F is partitioned into sets F_{1}, \ldots, F_{n}. Then there is some i and a disjoint collection D such that F_{i} is large for D.

Proof. Inductively apply Lemma 3.
Suppose that A is large for D. The goal of the next three lemmas is to show that a certain cleverly-chosen subset of A is still large for some disjoint collection $D^{\prime} \subset f(D)$.

Lemma 5. Suppose that A is large for D. Then there is a finite set $E \subset f(D)$, whose members are disjoint, such that for all $d \in f(D)$, if $d \cap(\cup E)=\emptyset$, there is some $e \in f(E)$ with $d \cup e \in A$.

Proof. Suppose not. Choose $e_{1} \in f(D)$ arbitrarily. There is some $e_{2} \in f(D)$ with $e_{1} \cap$ $e_{2}=\emptyset$ and $e_{1} \cup e_{2} \notin A$. Also, there is some $e_{3} \in f(D)$ with $\left(e_{1} \cup e_{2}\right) \cap e_{3}=\emptyset$ and $e_{1} \cup e_{3} \notin A, e_{2} \cup e_{3} \notin A, e_{1} \cup e_{2} \cup e_{3} \notin A$. Continuing in this manner, we obtain disjoint sets $e_{1}, e_{2}, e_{3}, \ldots$ so that if $e \in f\left(\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}\right)$ then $e_{n+1} \cup e \notin A$. Writing $e_{i}^{\prime}=e_{2 i-1} \cup e_{2 i}$ for each i, and setting $D^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots\right\} \subset f(D)$, we see that D^{\prime} contradicts the assumption that A is large for D. (Note that we don't know that each $e_{i} \notin A$, so we need to consider the e_{i}^{\prime} instead.)

Lemma 6. Suppose that A is large for D. Then there is a set $e^{\prime} \in f(D)$, and a disjoint collection $D^{\prime} \subset f(D)$, each of whose members is disjoint from e^{\prime}, such that

$$
A\left(e^{\prime}\right)=\left\{a \in A: a \cap e^{\prime}=\emptyset, a \cup e^{\prime} \in A\right\}
$$

is large for D^{\prime}.
Proof. Let $E \subset f(D)$ be as in Lemma 5 and let

$$
D_{1}=\{d \in D: d \cap e=\emptyset \text { for all } e \in E\} .
$$

Note that $A \cap f\left(D_{1}\right)$ is large for D_{1}. For every $e \in f(E)$ set

$$
A_{e}=\left\{a \in A \cap f\left(D_{1}\right): a \cup e \in A\right\} .
$$

By Lemma 5,

$$
A \cap f\left(D_{1}\right) \subset \bigcup_{e \in f(E)} A_{e}
$$

In other words, we have partitioned the relevant part of A into finitely many $\left(2^{|E|}-1\right)$ pieces. Repeated application of Lemma 3 yields a disjoint collection $D^{\prime} \subset f\left(D_{1}\right)$, and a fixed $e^{\prime} \in f(E)$, such that $A_{e^{\prime}}$, and therefore $A\left(e^{\prime}\right)$, is large for D^{\prime}.

A subtle refinement of Lemma 6 is just what we need to prove the theorem.
Lemma 7. Suppose that A is large for D. Then there is a set $e^{\prime \prime} \in A \cap f(D)$, and a disjoint collection $D^{\prime \prime} \subset f(D)$, each of whose members is disjoint from $e^{\prime \prime}$, such that

$$
A\left(e^{\prime \prime}\right)=\left\{a \in A: a \cap e^{\prime \prime}=\emptyset, a \cup e^{\prime \prime} \in A\right\}
$$

is large for $D^{\prime \prime}$.
Proof. By Lemma 6 we have $e_{1} \in f(D)$ and $D_{1}^{\prime} \subset f(D)$, each of whose members is disjoint from e_{1}^{\prime}, such that

$$
A\left(e_{1}^{\prime}\right)=\left\{a \in A: a \cap e_{1}^{\prime}=\emptyset, a \cup e_{1}^{\prime} \in A\right\}
$$

is large for D_{1}^{\prime}. We next find $e_{2} \in f\left(D_{1}^{\prime}\right)$ and $D_{2}^{\prime} \subset f\left(D_{1}^{\prime}\right)$, each of whose members is disjoint from e_{2}^{\prime}, such that

$$
A\left(e_{2}^{\prime}\right)=\left\{a \in A\left(e_{1}^{\prime}\right): a \cap e_{2}^{\prime}=\emptyset, a \cup e_{2}^{\prime} \in A\left(e_{1}^{\prime}\right)\right\}
$$

is large for D_{2}^{\prime}. Continuing, we find, for each $n \geq 1, e_{n}^{\prime}, D_{n}^{\prime}$ and $A\left(e_{n}^{\prime}\right)$ with

- $e_{n}^{\prime} \in f\left(D_{n-1}^{\prime}\right)$
- $D_{n}^{\prime} \subset f\left(D_{n-1}^{\prime}\right)$
- $d \in D_{n}^{\prime} \Rightarrow d \cap e_{n}^{\prime}=\emptyset$
- $A\left(e_{n}^{\prime}\right)=\left\{a \in A\left(e_{n-1}^{\prime}\right): a \cap e_{n}^{\prime}=\emptyset, a \cup e_{n}^{\prime} \in A\left(e_{n-1}^{\prime}\right)\right\}$ large for D_{n}^{\prime}.

The family $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \ldots\right\} \subset f(D)$ is itself a disjoint collection, so there are $i_{1}<\cdots<i_{r}$ with

$$
e^{\prime \prime}=\bigcup_{1 \leq j \leq r} e_{i_{j}} \in A
$$

Set $D^{\prime \prime}=D_{i_{r}}^{\prime}$ and we are done.

Rather remarkably, we now just repeat the proof of Lemma 7 to obtain the full theorem. For let F be partitioned as $F=F_{1} \cup \cdots \cup F_{n}$. By Lemma 4, some F_{i} is large for some disjoint collection D. We proceed as in the proof of Lemma 7, first finding $e_{1}^{\prime \prime} \in F_{i} \cap f(D)$ and $D_{1}^{\prime \prime} \subset f(D)$, each of whose members is disjoint from $e_{1}^{\prime \prime}$, such that

$$
A\left(e_{1}^{\prime \prime}\right)=\left\{a \in F_{i}: a \cap e_{1}^{\prime \prime}=\emptyset, a \cup e_{1}^{\prime \prime} \in F_{i}\right\}
$$

is large for $D_{1}^{\prime \prime}$. Continuing, we find, for each $n \geq 1, e_{n}^{\prime \prime}, D_{n}^{\prime \prime}$ and $A\left(e_{n}^{\prime \prime}\right)$ with

- $e_{n}^{\prime \prime} \in A\left(e_{n-1}^{\prime \prime}\right) \cap f\left(D_{n-1}^{\prime}\right)$
- $D_{n}^{\prime \prime} \subset f\left(D_{n-1}^{\prime \prime}\right)$
- $d \in D_{n}^{\prime \prime} \Rightarrow d \cap e_{n}^{\prime \prime}=\emptyset$
- $A\left(e_{n}^{\prime \prime}\right)=\left\{a \in A\left(e_{n-1}^{\prime \prime}\right): a \cap e_{n}^{\prime \prime}=\emptyset, a \cup e_{n}^{\prime \prime} \in A\left(e_{n-1}^{\prime \prime}\right)\right\}$ large for $D_{n}^{\prime \prime}$.

Our sought-after disjoint collection is just $\left\{e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}, \ldots\right\}$.

