
Gallai’s Theorem

Let V = {v1, . . . , vt} ∈ Rd be a finite set of points. A set W = {w1, . . . , wt} ∈ Rd is said
to be homothetic to V , if, after possibly rearranging the wi, there exists a nonzero c ∈ R
and also b ∈ Rd such that

wi = cvi + b

for each i. In other words, W is a scaled and translated (but not rotated) copy of V .

Gallai’s theorem states the following

Theorem 1. Let V ∈ Rd be finite. Then any finite coloring of Rd contains a monochro-
matic W homothetic to V .

Proof. This is often called a “one line” deduction from the Hales-Jewett theorem, but it
is a slightly tricky line to reconstruct!

Let V = {v1, . . . , vt} ∈ Rd, and let χ be an r-coloring of Rd. We’re going to apply the Hales-
Jewett theorem, so we need the monochromatic line it gives us to yield a monochromatic
W . Since |W | = t, it makes sense to apply the Hales-Jewett theorem with r colors and
cube side-length t. Accordingly, let n = HJ(r, t). So far, so good.

Next, we need to use χ to define an r-coloring χ′ of the cube [t]n = {1, . . . , t}n which does
the job. Here it is (this is the “one line”):

χ′(a1, . . . , an) = χ

(
n∑

j=1

vaj

)
= χ

(
t∑

i=1

nivi

)
,

where, for 1 ≤ i ≤ t, ni = ni(a1, . . . , an) is the number of times i appears in (a1, . . . , an).

Why does this work? First, we apply the Hales-Jewett theorem to get a monochromatic
line L ⊆ [t]n (perhaps this is the “one line” - who knows). L has active coordinates from
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an index set I ⊆ [n], and fixed coordinates fi for i ∈ F = [n] \ I. The fact that L is
monochromatic under χ′ means that, under χ, all the points∑

i∈F

vfi + |I|vi

receive the same color. But these points comprise our homothetic copy of V , with

b =
∑
i∈F

vfi and c = |I| ≠ 0.

A couple of remarks are in order. First, the dimension d does not really feature in the
proof. Second, given χ and V , the proof tells us to examine only the colors of a finite set
of points in SV ⊆ Rd. Let’s look at a few examples.

• d = 1, r = 2 and V = {0, 1}
Let n = HJ(2, 2) = 2. (It is not hard to check that HJ(2, 2) = 2: two of the points
(1, 1), (1, 2) and (2, 2) must receive the same color, and these points form a monochromatic
line.) The proof tells us that among the points {0, 1, 2} we can find a homothetic copy
of V . Since a homothetic copy of V is just two identically-colored points, we could have
figured this out without the Hales-Jewett theorem.

• d = 1, r = 2 and V = {0, 1, 2}
Let n = HJ(2, 3) = 4. (This is non-trivial! It was established in [1].) This time, the proof
tells us that among the points {0, 1, 2, 3, 4, 5, 6, 7, 8} we can find a homothetic copy of V .
Now a homothetic copy of V is just a three-term arithmetic progression, so we’ve proved
that the van der Waerden number W (3, 2) satisfies W (3, 2) ≤ 9. This is much better than
our earlier bound W (3, 2) ≤ 325, and, since in fact W (3, 2) = 9, it is actually the best
bound we could have hoped for.

• d = 2, r = 2 and V = {0, i, i′}, where i′ = (1
2
,
√
3
2
)

We’re looking for monochromatic equilateral triangles with a horizontal base (either the
“right way up” or “upside down”, although the proof above supplies a triangle that is the
“right way up”). The proof tells us to examine just the 15 points ai + bi′, where a, b ∈ Z
with a, b ≥ 0 and a+ b ≤ 4. And indeed it is easy to check that any 2-coloring of these 15
points contains a homothetic copy W of V . This is “best possible”, in the sense that if we
omit the point 4i, there’s a 2-coloring of the remaining 14 points with no such W .
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