Folkman's Theorem

For real numbers x_{1}, \ldots, x_{n}, we define $\operatorname{FS}\left(x_{1}, \ldots, x_{n}\right)$ to be the set of (nonempty) finite sums of the x_{i}, so that

$$
\mathrm{FS}\left(x_{1}, \ldots, x_{n}\right)=\left\{\sum_{i \in I} x_{i}: \emptyset \neq I \subset[n]\right\} .
$$

Folkman's theorem states the following
Theorem 1. For all positive integers k and r, there exists a least integer $F(k, r)$ such that any r-coloring of $[F(k, r)]$ contains $a_{1}<a_{2}<\cdots<a_{k}$ with $\sum_{i} a_{i} \leq F(k, r)$ and FS $\left(a_{1}, \ldots, a_{k}\right)$ monochromatic.

To prove the theorem, we require a lemma.
Lemma 2. For all positive integers k and r, there exists a least integer $G(k, r)$ such that any r-coloring of $[G(k, r)]$ contains $b_{1}<b_{2}<\cdots<b_{k}$ with $\sum_{i} b_{i} \leq G(k, r)$ and in which the color of $\sum_{i \in I} b_{i}$ depends only on $\max I$.

Proof. We use induction on k and van der Waerden's theorem. Suppose we know that $n=G(k-1, r)$ is finite. I claim that

$$
G(k, r) \leq 2 W(G(k-1, r)+1, r)=2 W(n+1, r),
$$

where $W(x, y)$ denotes the van der Waerden number. To prove this, suppose we are given an r-coloring of $[N]$, where $N=2 W(n+1, r)$. Inside the second half of the interval, $[N / 2+1, N]$, we find a monochromatic arithmetic progression of length $n+1:\{a, a+$ $d, \ldots, a+n d\}$. Identifying $\{d, 2 d, \ldots, n d\}$ with $[n]$, we apply the induction hypothesis to find integers $b_{1}<b_{2}<\cdots<b_{k-1}$, all divisible by d, with $\sum_{i} b_{i} \leq n d$, and where the color of $\sum_{i \in I} b_{i}$ depends only on $\max I$. Set $b_{k}=a$ and we are done.

From here, the rest is easy. Indeed, I claim that

$$
F(k, r) \leq G(r(k-1)+1, r)
$$

This is because, given an r-coloring of $[N]=[G(r(k-1)+1, r)]$, we use the lemma to find a set $b_{1}<b_{2}<\cdots<b_{r(k-1)+1}$ in which the color of $\sum_{i \in I} b_{i}$ depends only on max I. By the pigeonhole principle, at least k of the b_{i} must receive the same color, so that $b_{i(1)}<b_{i(2)}<\cdots<b_{i(k)}$ are all colored blue, say. But then the entire set $\operatorname{FS}\left(b_{i(1)}, \ldots, b_{i(k)}\right)$ is blue as well.

