Combinatorics: Homework Set 2

November 6, 2009

1. Prove that if $|X|=n$, and if $\mathcal{A} \subset \mathcal{P}(X)$ is an upset (i.e. $A \in \mathcal{A}, A \subset B$ imply $B \in \mathcal{A}$) while $\mathcal{B} \subset \mathcal{P}(X)$ is a downset (i.e. $A \in \mathcal{B}, B \subset A$ imply $B \in \mathcal{B}$) then

$$
2^{n}|\mathcal{A} \cap \mathcal{B}| \leq|\mathcal{A}||\mathcal{B}| .
$$

2. For $\mathcal{A} \subset \mathcal{P}(X)$ write $\mathcal{A}-\mathcal{A}=\{A \backslash B: A, B \in \mathcal{A}\}$. Prove that $|\mathcal{A}-\mathcal{A}| \geq|\mathcal{A}|$.
3. Show that Harper's vertex isoperimetric inequality for the cube implies the KruskalKatona theorem.
4. Write down a detailed proof that the neighborhood of an initial segment of the simplicial order in the cube Q^{n} is itself an initial segment of the simplicial order.
5. The grid $G=[k]^{2}$ is the graph with vertex set $[k] \times[k]$ and edges joining points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ if either $x_{1}=x_{2}$ and $\left|y_{1}-y_{2}\right|=1$ or $y_{1}=y_{2}$ and $\left|x_{1}-x_{2}\right|=1$. State and prove a vertex isoperimetric inequality for G. (Hint: Use compressions.)
6. Show that every 10×10 matrix whose entries are $1,2, \ldots, 100$ in some order has two neighboring entries (in a row or in a column) that differ by at least 10 .
7. Can a countably infinite set have an uncountable collection of nonempty subsets such that the intersection of any two of them is finite?
8. Can a countably infinite set have an uncountable collection of nested subsets (i.e. an uncountable collection \mathcal{A} such that for $A, B \in \mathcal{A}$, either $A \subset B$ or $B \subset A$)?
9. Construct a 2-coloring of \mathbb{N} containing no infinite monochromatic arithmetic progression. 10. Construct a set $A \subset\{1,2, \ldots, 100000\}$ of size $|A|=1000$ which contains no 3-term arithmetic progression.
