Combinatorics: Homework Set 1

October 27, 2009

1. Let $\emptyset \neq \mathcal{A} \subset X^{(r)}, r \geq 1$, and suppose that every set $A \in X^{(r)}$ containing a set $B \in \partial^{-} \mathcal{A}$ belongs to \mathcal{A}. Prove that $\mathcal{A}=X^{(r)}$.
2. Let $x_{1}, \ldots, x_{n} \in \mathbb{R}$ with $\left|x_{i}\right| \geq 1$ for all i. Show that at most $\binom{n}{\lfloor n / 2\rfloor}$ of the 2^{n} sums $s(A)=\sum_{i \in A} x_{i}$ can lie within any fixed interval $[t, t+1) \subset \mathbb{R}$. (By convention $s(\emptyset)=0$.) 3. Prove that we have equality in Sperner's theorem only if $\mathcal{A}=X^{(s)}$, with $s=\lfloor n / 2\rfloor$ or $s=\lceil n / 2\rceil$. (Hint. We need to have equality at every step of the proof presented in class. Consequently, the case where n is even is easy. When n is odd, say $n=2 r+1$, we must have $\mathcal{A} \subset X^{(r)} \cup X^{(r+1)}$. Also, if $A, B \in \mathcal{A}$ with $\left\{x_{1}, \ldots, x_{r}\right\}=A \subset B=A \cup\left\{x_{r+1}\right\}$, then precisely one of A and B is in \mathcal{A}.)
3. Determine the cases of equality in the Erdős-Ko-Rado theorem when $n / 3<r<n / 2$.
4. Reformulate the proof of the Erdős-Ko-Rado theorem presented in class in terms of probability.
5. Prove the following extension of the Erdős-Ko-Rado theorem. If $1 \leq r<n / 2$ and $\mathcal{A} \subset \bigcup_{i=0}^{r} X^{(i)}$ is an intersecting family then $|\mathcal{A}| \leq \sum_{i=1}^{r}\binom{n-1}{i-1}$.
6. Write out the first 25 sets in the colex order on $\mathbb{N}^{(4)}$.
7. What is the $2009^{\text {th }}$ set in the colex order on $\mathbb{N}^{(4)}$?
8. Give an example of a set system $\mathcal{A} \subset X^{(r)}$ and two disjoint sets $U, V \subset X$ with $|U|=|V|$ and max $V>\max U$ such that $\left|\partial^{-} C_{U, V} \mathcal{A}\right|>\left|\partial^{-} \mathcal{A}\right|$.
9. Deduce the Erdős-Ko-Rado theorem from the Kruskal-Katona theorem. (Hint. Suppose that $\mathcal{A} \subset X^{(r)}$ is intersecting with $1 \leq r<n / 2$. Consider the set system $\mathcal{B} \subset X^{(n-r)}$ defined by $\mathcal{B}=\{B \subset X: B=X \backslash A$ for some $A \in \mathcal{A}\}$. The argument is due to Daykin.)
