Galois Theory: Homework Set 2

February 6, 2013

- 1. Find the three intermediate fields between $\mathbb{Q}(\sqrt{2},\sqrt{3})$ and \mathbb{Q} , and the corresponding subgroups of $\operatorname{Gal}(\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q})$.
- 2. Show that every extension of degree d = 2 is normal. Is this true for any other d?
- 3. Let f be a polynomial of degree n over \mathbb{Q} , and let $E \subset \mathbb{C}$ be its splitting field. Show that $[E:\mathbb{Q}]$ divides n!.
- 4. Show that if $\alpha_1, \ldots, \alpha_k$ are algebraic numbers, then there exist integers n_1, \ldots, n_k such that $\mathbb{Q}(\alpha_1, \ldots, \alpha_k) = \mathbb{Q}(n_1\alpha_1 + \cdots + n_k\alpha_k).$
- 5. Let $E, F \subset \mathbb{C}$. Show that if [E:F] is finite then $E \subset E'$, where E' is normal over F.
- 6. Determine, with proof, the Galois groups of the following extensions:

(a)
$$\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}) : \mathbb{Q}$$

(b) $\mathbb{Q}\left(\sqrt{2+\sqrt{2}}\right) : \mathbb{Q}$
(c) $\mathbb{Q}\left(\sqrt{2+\sqrt{2}+\sqrt{2}}\right) : \mathbb{Q}$
(d) $\mathbb{R} : \mathbb{Q}$

7. Compute the Galois group of (the splitting field of) $x^5 - 2$ over \mathbb{Q} .